
Reducing higher inductive types to quotients

Floris van Doorn

Carnegie Mellon University

May 20, 2016

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 1 / 23

Motivation

Goal: Reduce complicated higher inductive types to simpler ones.

Analogue: In Extensional Type Theory, we can reduce all inductive types
to W-types and Σ-types.

Question: What makes a higher inductive type complicated?
It is recursive (n-truncation, localization, spectrification)
It has higher-dimensional path-constructors (torus, Eilenberg-MacLane
spaces K (G , 1))
Higher inductive-inductive types (Cauchy reals)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 2 / 23

Motivation

Goal: Reduce complicated higher inductive types to simpler ones.

Analogue: In Extensional Type Theory, we can reduce all inductive types
to W-types and Σ-types.

Question: What makes a higher inductive type complicated?
It is recursive (n-truncation, localization, spectrification)
It has higher-dimensional path-constructors (torus, Eilenberg-MacLane
spaces K (G , 1))
Higher inductive-inductive types (Cauchy reals)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 2 / 23

Quotients

Question: What higher inductive types do we start with?

Given A : U and R : A→ A→ U the quotient is:

HIT quotientA(R) :=

q : A→ quotientA(R)

Π(x , y : A), R(x , y)→ q(x) = q(y)

This is the homotopy-coequalizer of the projections

Σ(x , y : A), R(x , y) A
π1

π2

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 3 / 23

Quotients

Using quotients we can define other simple HITs:

The pushout of C
g← A f→ B is the quotient of B + C under the

relation R , defined as a inductively

inductive R : (B + C)→ (B + C)→ U :=
I Π(a : A), R(inl(f (a)), inr(g(a)))

The colimit of A0
f0→ A1

f1→ · · · is the quotient of Σ(n : N), A(n)
under the relation S , defined inductively

inductive S : (Σ(n : N), A(n))→ (Σ(n : N), A(n))→ U :=
I Π(n : N)(a : An), S((n, a), (n + 1, fn(a)))

This also gives suspensions, spheres, wedge product, join, smash
product, cofibers, . . .

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 4 / 23

Quotients

Using quotients we can define other simple HITs:

The pushout of C
g← A f→ B is the quotient of B + C under the

relation R , defined as a inductively

inductive R : (B + C)→ (B + C)→ U :=
I Π(a : A), R(inl(f (a)), inr(g(a)))

The colimit of A0
f0→ A1

f1→ · · · is the quotient of Σ(n : N), A(n)
under the relation S , defined inductively

inductive S : (Σ(n : N), A(n))→ (Σ(n : N), A(n))→ U :=
I Π(n : N)(a : An), S((n, a), (n + 1, fn(a)))

This also gives suspensions, spheres, wedge product, join, smash
product, cofibers, . . .

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 4 / 23

Quotients

Using quotients we can define other simple HITs:

The pushout of C
g← A f→ B is the quotient of B + C under the

relation R , defined as a inductively

inductive R : (B + C)→ (B + C)→ U :=
I Π(a : A), R(inl(f (a)), inr(g(a)))

The colimit of A0
f0→ A1

f1→ · · · is the quotient of Σ(n : N), A(n)
under the relation S , defined inductively

inductive S : (Σ(n : N), A(n))→ (Σ(n : N), A(n))→ U :=
I Π(n : N)(a : An), S((n, a), (n + 1, fn(a)))

This also gives suspensions, spheres, wedge product, join, smash
product, cofibers, . . .

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 4 / 23

Quotients

We can construct more HITs from quotients.

Today I will talk about the construction of
The propositional truncation
HITs with 2-constructors (torus, groupoid quotient,
Eilenberg-MacLane spaces K (G , 1), reduced suspension, reflexive
quotient)

Work in progress:
Define ω-compact localizations (which includes all n-truncations)
using quotients (Egbert Rijke will talk about this in the afternoon).

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 5 / 23

Propositional Truncation

The Propositional Truncation ‖−‖ as a HIT:

HIT ‖A‖ :=

|−| : A→ ‖A‖
ε : Π(x , y : ‖A‖), x = y

ε is a recursive: the domain of the recursor is the type ‖A‖ being
constructed.

2

•
0
•
1

‖2‖

(partial structure)

• •
ε(|0|, |1|)

ε(|1|, |0|)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 6 / 23

Propositional Truncation

The Propositional Truncation ‖−‖ as a HIT:

HIT ‖A‖ :=

|−| : A→ ‖A‖
ε : Π(x , y : ‖A‖), x = y

ε is a recursive: the domain of the recursor is the type ‖A‖ being
constructed.

2

•
0
•
1

‖2‖

(partial structure)

• •
ε(|0|, |1|)

ε(|1|, |0|)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 6 / 23

Propositional Truncation

The Propositional Truncation ‖−‖ as a HIT:

HIT ‖A‖ :=

|−| : A→ ‖A‖
ε : Π(x , y : ‖A‖), x = y

ε is a recursive: the domain of the recursor is the type ‖A‖ being
constructed.

2

•
0
•
1

‖2‖

(partial structure)

• •
ε(|0|, |1|)

ε(|1|, |0|)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 6 / 23

Propositional Truncation

The Propositional Truncation ‖−‖ as a HIT:

HIT ‖A‖ :=

|−| : A→ ‖A‖
ε : Π(x , y : ‖A‖), x = y

ε is a recursive: the domain of the recursor is the type ‖A‖ being
constructed.

2

•
0
•
1

‖2‖
(partial structure)

• •
ε(|0|, |1|)

ε(|1|, |0|)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 6 / 23

Propositional Truncation

The Propositional Truncation ‖−‖ as a HIT:

HIT ‖A‖ :=

|−| : A→ ‖A‖
ε : Π(x , y : ‖A‖), x = y

ε is a recursive: the domain of the recursor is the type ‖A‖ being
constructed.

2

•
0
•
1

‖2‖
(partial structure)

• •
ε(|0|, |1|)

ε(|1|, |0|)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 6 / 23

Propositional Truncation

Proof that ε(|0|, |1|) = ε(|1|, |0|)−1.

We prove the following statement:

Π(x : ‖2‖)(p : |0| = x), p = ε(|0|, |0|)−1 · ε(|0|, x).

We can prove this by path induction on p. Then we need to prove

refl|0| = ε(|0|, |0|)−1 · ε(|0|, |0|),

which is an ∞-groupoid law.

Now ε(|0|, |1|) and ε(|1|, |0|)−1 are both equal to the same path, hence
equal to each other.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 7 / 23

Propositional Truncation

Proof that ε(|0|, |1|) = ε(|1|, |0|)−1.

We prove the following statement:

Π(x : ‖2‖)(p : |0| = x), p = ε(|0|, |0|)−1 · ε(|0|, x).

We can prove this by path induction on p. Then we need to prove

refl|0| = ε(|0|, |0|)−1 · ε(|0|, |0|),

which is an ∞-groupoid law.

Now ε(|0|, |1|) and ε(|1|, |0|)−1 are both equal to the same path, hence
equal to each other.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 7 / 23

Propositional Truncation

Proof that ε(|0|, |1|) = ε(|1|, |0|)−1.

We prove the following statement:

Π(x : ‖2‖)(p : |0| = x), p = ε(|0|, |0|)−1 · ε(|0|, x).

We can prove this by path induction on p. Then we need to prove

refl|0| = ε(|0|, |0|)−1 · ε(|0|, |0|),

which is an ∞-groupoid law.

Now ε(|0|, |1|) and ε(|1|, |0|)−1 are both equal to the same path, hence
equal to each other.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 7 / 23

Propositional Truncation

Proof that ε(|0|, |1|) = ε(|1|, |0|)−1.

We prove the following statement:

Π(x : ‖2‖)(p : |0| = x), p = ε(|0|, |0|)−1 · ε(|0|, x).

We can prove this by path induction on p. Then we need to prove

refl|0| = ε(|0|, |0|)−1 · ε(|0|, |0|),

which is an ∞-groupoid law.

Now ε(|0|, |1|) and ε(|1|, |0|)−1 are both equal to the same path, hence
equal to each other.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 7 / 23

One-step truncation

We define the one-step truncation {A}, which is the following HIT.

HIT {A} :=

f : A→ {A}
e : Π(x , y : A), f (x) = f (y)

{{2}}
(partial structure)

apf (e(0, 1))

apf (e(1, 0))

• •

2

•
0
•
1

{2}

• •
e(0, 1)

e(1, 0)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 8 / 23

One-step truncation

We define the one-step truncation {A}, which is the following HIT.

HIT {A} :=

f : A→ {A}
e : Π(x , y : A), f (x) = f (y)

{{2}}
(partial structure)

apf (e(0, 1))

apf (e(1, 0))

• •

2

•
0
•
1

{2}

• •
e(0, 1)

e(1, 0)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 8 / 23

One-step truncation

We define the one-step truncation {A}, which is the following HIT.

HIT {A} :=

f : A→ {A}
e : Π(x , y : A), f (x) = f (y)

{{2}}
(partial structure)

apf (e(0, 1))

apf (e(1, 0))

• •

2

•
0
•
1

{2}

• •
e(0, 1)

e(1, 0)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 8 / 23

One-step truncation

We define the one-step truncation {A}, which is the following HIT.

HIT {A} :=

f : A→ {A}
e : Π(x , y : A), f (x) = f (y)

{{2}}
(partial structure)

apf (e(0, 1))

apf (e(1, 0))

• •

2

•
0
•
1

{2}

• •
e(0, 1)

e(1, 0)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 8 / 23

One-step truncation

Proof that apf (e(0, 1)) = (apf (e(1, 0)))−1.

[This equality lives in type f (f (0)) ={{2}} f (f (1))]

Definition. g : A→ B is weakly constant if Π(x , y : A), g(x) = g(y)
Lemma. If g : A→ B is weakly constant, then for any x , y : A the
function apg : x = y → g(x) = g(y) is weakly constant.

Proof. Fix x : A and let q be the proof that g is weakly constant. We first
prove:

Π(z : A)(p : x = z), apg (p) = q(x , x)−1 · q(x , z).

This again follows by path induction.
Now for any p, q : x = y both apg (p) and apg (q) are both equal to
q(x , x)−1 · q(x , y).

Since e proves that f is weakly-constant, we have

apf (e(0, 1)) = apf (e(1, 0)−1) = (apf (e(1, 0)))−1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 9 / 23

One-step truncation

Proof that apf (e(0, 1)) = (apf (e(1, 0)))−1.

[This equality lives in type f (f (0)) ={{2}} f (f (1))]

Definition. g : A→ B is weakly constant if Π(x , y : A), g(x) = g(y)

Lemma. If g : A→ B is weakly constant, then for any x , y : A the
function apg : x = y → g(x) = g(y) is weakly constant.

Proof. Fix x : A and let q be the proof that g is weakly constant. We first
prove:

Π(z : A)(p : x = z), apg (p) = q(x , x)−1 · q(x , z).

This again follows by path induction.
Now for any p, q : x = y both apg (p) and apg (q) are both equal to
q(x , x)−1 · q(x , y).

Since e proves that f is weakly-constant, we have

apf (e(0, 1)) = apf (e(1, 0)−1) = (apf (e(1, 0)))−1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 9 / 23

One-step truncation

Proof that apf (e(0, 1)) = (apf (e(1, 0)))−1.

[This equality lives in type f (f (0)) ={{2}} f (f (1))]

Definition. g : A→ B is weakly constant if Π(x , y : A), g(x) = g(y)
Lemma. If g : A→ B is weakly constant, then for any x , y : A the
function apg : x = y → g(x) = g(y) is weakly constant.

Proof. Fix x : A and let q be the proof that g is weakly constant. We first
prove:

Π(z : A)(p : x = z), apg (p) = q(x , x)−1 · q(x , z).

This again follows by path induction.
Now for any p, q : x = y both apg (p) and apg (q) are both equal to
q(x , x)−1 · q(x , y).

Since e proves that f is weakly-constant, we have

apf (e(0, 1)) = apf (e(1, 0)−1) = (apf (e(1, 0)))−1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 9 / 23

One-step truncation

Proof that apf (e(0, 1)) = (apf (e(1, 0)))−1.

[This equality lives in type f (f (0)) ={{2}} f (f (1))]

Definition. g : A→ B is weakly constant if Π(x , y : A), g(x) = g(y)
Lemma. If g : A→ B is weakly constant, then for any x , y : A the
function apg : x = y → g(x) = g(y) is weakly constant.

Proof. Fix x : A and let q be the proof that g is weakly constant. We first
prove:

Π(z : A)(p : x = z), apg (p) = q(x , x)−1 · q(x , z).

This again follows by path induction.
Now for any p, q : x = y both apg (p) and apg (q) are both equal to
q(x , x)−1 · q(x , y).

Since e proves that f is weakly-constant, we have

apf (e(0, 1)) = apf (e(1, 0)−1) = (apf (e(1, 0)))−1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 9 / 23

One-step truncation

Proof that apf (e(0, 1)) = (apf (e(1, 0)))−1.

[This equality lives in type f (f (0)) ={{2}} f (f (1))]

Definition. g : A→ B is weakly constant if Π(x , y : A), g(x) = g(y)
Lemma. If g : A→ B is weakly constant, then for any x , y : A the
function apg : x = y → g(x) = g(y) is weakly constant.

Proof. Fix x : A and let q be the proof that g is weakly constant. We first
prove:

Π(z : A)(p : x = z), apg (p) = q(x , x)−1 · q(x , z).

This again follows by path induction.
Now for any p, q : x = y both apg (p) and apg (q) are both equal to
q(x , x)−1 · q(x , y).

Since e proves that f is weakly-constant, we have

apf (e(0, 1)) = apf (e(1, 0)−1) = (apf (e(1, 0)))−1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 9 / 23

One-step truncation

Proof that apf (e(0, 1)) = (apf (e(1, 0)))−1.

[This equality lives in type f (f (0)) ={{2}} f (f (1))]

Definition. g : A→ B is weakly constant if Π(x , y : A), g(x) = g(y)
Lemma. If g : A→ B is weakly constant, then for any x , y : A the
function apg : x = y → g(x) = g(y) is weakly constant.

Proof. Fix x : A and let q be the proof that g is weakly constant. We first
prove:

Π(z : A)(p : x = z), apg (p) = q(x , x)−1 · q(x , z).

This again follows by path induction.
Now for any p, q : x = y both apg (p) and apg (q) are both equal to
q(x , x)−1 · q(x , y).

Since e proves that f is weakly-constant, we have

apf (e(0, 1)) = apf (e(1, 0)−1) = (apf (e(1, 0)))−1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 9 / 23

One-step truncation

{{2}}
(partial structure)

• •

However, we have e(f (0), f (1)) 6= apf (e(0, 1)).
Lemma. If p : a =A b, then the paths apf (p) and e(a, b) in {A} are
provably different, i.e. apf (p) 6= e(a, b).
Proof sketch. We can define a map {A} → S1 sending all point
constructors to base and all path constructors e(a, b) to loop.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 10 / 23

One-step truncation

{{2}}
(partial structure)

• •

However, we have e(f (0), f (1)) 6= apf (e(0, 1)).
Lemma. If p : a =A b, then the paths apf (p) and e(a, b) in {A} are
provably different, i.e. apf (p) 6= e(a, b).
Proof sketch. We can define a map {A} → S1 sending all point
constructors to base and all path constructors e(a, b) to loop.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 10 / 23

Construction of the Propositional truncation

We define {A}∞ as the colimit of this diagram:

A f−→ {A} f−→ {{A}} f−→ {{{A}}} f−→ · · · (1)

Theorem
{A}∞ is the propositional truncation of A.

Corollary
A function in ‖A‖ → B is the same as a cocone over (1), for any type B.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 11 / 23

2-HITs

We want to construct HITs with 2-path constructors.
Examples:
HIT T 2 :=

b : T 2

`1, `2 : b = b
s : `1 · `2 = `2 · `1

HIT K (G , 1) :=

? : K (G , 1)

p : G → ? = ?

m : Π(g , h : G), p(gh) = p(g) · p(h)

K (G , 1) is 1-truncated

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 12 / 23

Hubs and spokes

In the book, 2-HITs are reduced to 1-HITs using the hubs and spokes
method.

⇒

The torus becomes:
HIT T 2 :=

b : T 2

`1, `2 : b = b
h : T 2

s : Π(x : S1),

circle.rec b (`1 · `2 · `−1
1 · `

−1
2)

︸ ︷︷ ︸
S1→T 2

x = h

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 13 / 23

Hubs and spokes

In the book, 2-HITs are reduced to 1-HITs using the hubs and spokes
method.

⇒

The torus becomes:
HIT T 2 :=

b : T 2

`1, `2 : b = b
h : T 2

s : Π(x : S1), circle.rec b (`1 · `2 · `−1
1 · `

−1
2)︸ ︷︷ ︸

S1→T 2

x = h

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 13 / 23

Hubs and spokes

Why does hubs and spokes work?
For a0 : A and p : a0 = a0 we have(

Σ(h : A), Π(x : S1), circle.rec a0 p x = h
)
' (p = 1).

Proof. Computing with equivalences:

Σ(h : A), Π(x : S1), circle.rec a0 p x = h

' Σ(h : A), Σ(q : a0 = h), q =λx .circle.rec a0 p x=h
loop q

' 1 =λx .circle.rec a0 p x=a0
loop 1

' 1 · 1 = apcircle.rec a0 p(loop) · 1
' p = 1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 14 / 23

Hubs and spokes

Why does hubs and spokes work?
For a0 : A and p : a0 = a0 we have(

Σ(h : A), Π(x : S1), circle.rec a0 p x = h
)
' (p = 1).

Proof. Computing with equivalences:

Σ(h : A), Π(x : S1), circle.rec a0 p x = h

' Σ(h : A), Σ(q : a0 = h), q =λx .circle.rec a0 p x=h
loop q

' 1 =λx .circle.rec a0 p x=a0
loop 1

' 1 · 1 = apcircle.rec a0 p(loop) · 1
' p = 1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 14 / 23

Hubs and spokes

Why does hubs and spokes work?
For a0 : A and p : a0 = a0 we have(

Σ(h : A), Π(x : S1), circle.rec a0 p x = h
)
' (p = 1).

Proof. Computing with equivalences:

Σ(h : A), Π(x : S1), circle.rec a0 p x = h

' Σ(h : A), Σ(q : a0 = h), q =λx .circle.rec a0 p x=h
loop q

' 1 =λx .circle.rec a0 p x=a0
loop 1

' 1 · 1 = apcircle.rec a0 p(loop) · 1
' p = 1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 14 / 23

Hubs and spokes

Why does hubs and spokes work?
For a0 : A and p : a0 = a0 we have(

Σ(h : A), Π(x : S1), circle.rec a0 p x = h
)
' (p = 1).

Proof. Computing with equivalences:

Σ(h : A), Π(x : S1), circle.rec a0 p x = h

' Σ(h : A), Σ(q : a0 = h), q =λx .circle.rec a0 p x=h
loop q

' 1 =λx .circle.rec a0 p x=a0
loop 1

' 1 · 1 = apcircle.rec a0 p(loop) · 1
' p = 1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 14 / 23

Hubs and spokes

Why does hubs and spokes work?
For a0 : A and p : a0 = a0 we have(

Σ(h : A), Π(x : S1), circle.rec a0 p x = h
)
' (p = 1).

Proof. Computing with equivalences:

Σ(h : A), Π(x : S1), circle.rec a0 p x = h

' Σ(h : A), Σ(q : a0 = h), q =λx .circle.rec a0 p x=h
loop q

' 1 =λx .circle.rec a0 p x=a0
loop 1

' 1 · 1 = apcircle.rec a0 p(loop) · 1

' p = 1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 14 / 23

Hubs and spokes

Why does hubs and spokes work?
For a0 : A and p : a0 = a0 we have(

Σ(h : A), Π(x : S1), circle.rec a0 p x = h
)
' (p = 1).

Proof. Computing with equivalences:

Σ(h : A), Π(x : S1), circle.rec a0 p x = h

' Σ(h : A), Σ(q : a0 = h), q =λx .circle.rec a0 p x=h
loop q

' 1 =λx .circle.rec a0 p x=a0
loop 1

' 1 · 1 = apcircle.rec a0 p(loop) · 1
' p = 1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 14 / 23

Torus from quotients

Problem. The hubs-and-spokes-torus is not a quotient. The last path
constructor refers to previous path constructors, and cannot be written
down before you have `1 and `2 as paths in the torus.

s : Π(x : S1), circle.rec b (`1 · `2 · `−1
1 · `

−1
2) x = h

Solution. Do the constructions in two stages. First define a HIT
HIT pretorus :=

b̃ : pretorus
˜̀1, ˜̀2 : b = b
h̃ : pretorus

This is a quotient. Now we can define f : S1 → pretorus by

f (base) :≡ b̃

apf (loop) := ˜̀1 · ˜̀2 · ˜̀−1
1 · ˜̀−1

2 .

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 15 / 23

Torus from quotients

Problem. The hubs-and-spokes-torus is not a quotient. The last path
constructor refers to previous path constructors, and cannot be written
down before you have `1 and `2 as paths in the torus.

s : Π(x : S1), circle.rec b (`1 · `2 · `−1
1 · `

−1
2) x = h

Solution. Do the constructions in two stages. First define a HIT
HIT pretorus :=

b̃ : pretorus
˜̀1, ˜̀2 : b = b
h̃ : pretorus

This is a quotient. Now we can define f : S1 → pretorus by

f (base) :≡ b̃

apf (loop) := ˜̀1 · ˜̀2 · ˜̀−1
1 · ˜̀−1

2 .

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 15 / 23

Torus from quotients

We then define the torus:

HIT T 2 :=

i : pretorus→ T 2

σ : Π(x : S1), i(f (x)) = i(h)

The constructors for T 2 are defined as:

b :≡ i(b̃) : T 2

`i :≡ api (˜̀i) : b = b
s :≡ ?? : `1 · `2 = `2 · `1

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 16 / 23

Torus from quotients

We want to apply the equivalence(
Σ(h : A), Π(x : S1), circle.rec a0 p x = h

)
' (p = 1).

Let p̃ = ˜̀1 · ˜̀2 · ˜̀−1
1 · ˜̀−1

2 .
For x : S1 we have

circle.rec (i a0) (api (p̃)) x = i(circle.rec a0 p̃ x)
σ
= i(h̃).

From the equivalence we get

api (p̃) = 1.

This gives

`1 · `2 · `−1
1 · `

−1
2 ≡ api (˜̀1) · api (˜̀2) · api (˜̀1)−1 · api (˜̀2)−1 = 1.

which gives
s : `1 · `2 = `2 · `1.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 17 / 23

Remarks

This is just the definition of the constructors! We still need to define
the induction principle, and computation rules.
It should be a little bit simpler in a cubical type theory. However, most
steps do not become definitional even in cubical type theory.
We don’t prove the computation rule for the induction principle on
2-paths. However, this is not needed to characterize T 2 up to
equivalence.
We don’t just define the torus, but a wide class of 2-HITs. The 2-path
constructor must be an equality between

I 1-path constructors;
I A point constuctor f : A→ X applied to a path in A;
I reflexivity;
I concatenations/inverses of such paths.

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 18 / 23

More 2-HITs

Given A : U and R : A→ A→ U we define words in R to be
inductive R : A→ A→ U :=

[−] : Π(a, a′ : A), R(a, a′)→ R(a, a′)
ρ : Π(a, a′ : A), a = a′ → R(a, a′)
−−1 : Π(a, a′ : A), R(a, a′)→ R(a′, a)

− · − : Π(a, a′, a′′ : A), R(a, a′)→ R(a′, a′′)→ R(a, a′′)

Then, if we have a map

p : Π(a, a′ : A), R(a, a′)→ i(a) = i(a′)

we can extend it to a map

p : Π(a, a′ : A), R(a, a′)→ i(a) = i(a′)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 19 / 23

More 2-HITs

If we are also given a “relation over R ,” i.e. a family

Q : Π(a, a′ : A), R(a, a′)→ R(a, a′)→ U

Then we define the following 2-HIT:

HIT two-quotient(A,R,Q) : U :=

i : A→ two-quotient(A,R,Q)

p : Π(a, a′ : A), R(a, a′)→ i(a) = i(a′)
r : Π(a, a′ : A)(r , r ′ : R(a, a′)), Q(r , r ′)→ p(r) = p(r ′)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 20 / 23

More 2-HITs

Example: K (G , 1) :≡ ‖two-quotient(A,R,Q)‖1 with

A :≡ 1
R(?, ?) :≡ G

and Q is an inductive family with 1 constructor, namely:

q : Π(g1, g2 : G), Q([g1 ∗ g2], [g1] · [g2])

HIT K (G , 1) :=

b : K (G , 1)

p : G → b = b

m : Π(g , h : G), p(gh) = p(g) · p(h)

K (G , 1) is 1-truncated

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 21 / 23

Conclusions

We can reduce a wide class of HITs to quotients.
Are there HITs which we cannot reduce to quotients?

I I don’t know
I There are certainly HITs where I have no idea how to reduce them.

(e.g. arbitrary localizations)

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 22 / 23

Thank you

Floris van Doorn (CMU) Reducing HITs to quotients May 20, 2016 23 / 23

