
The Carleson Project: Collaboration using
Formalization

Floris van Doorn

University of Bonn

7 April 2025

https://florisvandoorn.com/carleson/

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 1 / 24

https://florisvandoorn.com/carleson/


Overview

Overview:

Overview of Lean and Mathlib;

Statement of Carleson’s theorem;

Organization of the formalization.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 2 / 24



Formalization

Lean is a programming language and interactive
theorem prover.

It is open source, and under active development
since 2013.

In it, you can write mathematical definitions, theorem statements and
detailed proofs.

These proofs are checked by Lean, down to the axioms of mathematics.
This is called formalization.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 3 / 24



Lean

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 4 / 24



Lean’s mathematical library

Lean has a mathematical library Mathlib with results from many fields in
mathematics:
algebra, analysis, geometry, probability theory, combinatorics, logic,
topology, category theory, . . .

It is large: Mathlib has ∼1.8 million lines of code, with thousands of
definitions and theorems written by over 550 contributors.

It is actively developed: There are more than ∼200 contributions every
week, reviewed by the 28 maintainers and 22 reviewers.

I have worked with Lean since 2014 and am a maintainer of Mathlib since
2019.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 5 / 24



Exciting projects in Lean

Definition of a perfectoid space (Buzzard, Commelin, Massot)

Independence of the continuum hypothesis (FvD, Jesse Han)

Liquid Tensor Experiment (led by Commelin and Topaz)

Polynomial Freiman–Rusza conjecture (led by Terrence Tao)

Sphere eversion project (FvD, Massot, Nash)

AlphaProof used Lean to solve IMO problems (Google Deepmind)

Fermat’s Last Theorem project (led by Kevin Buzzard)

Equational theories (led by Terrence Tao)

Carleson project (led by FvD)

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 6 / 24



Exciting projects in Lean

Definition of a perfectoid space (Buzzard, Commelin, Massot)

Independence of the continuum hypothesis (FvD, Jesse Han)

Liquid Tensor Experiment (led by Commelin and Topaz)

Polynomial Freiman–Rusza conjecture (led by Terrence Tao)

Sphere eversion project (FvD, Massot, Nash)

AlphaProof used Lean to solve IMO problems (Google Deepmind)

Fermat’s Last Theorem project (led by Kevin Buzzard)

Equational theories (led by Terrence Tao)

Carleson project (led by FvD)

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 6 / 24



Exciting projects in Lean

Definition of a perfectoid space (Buzzard, Commelin, Massot)

Independence of the continuum hypothesis (FvD, Jesse Han)

Liquid Tensor Experiment (led by Commelin and Topaz)

Polynomial Freiman–Rusza conjecture (led by Terrence Tao)

Sphere eversion project (FvD, Massot, Nash)

AlphaProof used Lean to solve IMO problems (Google Deepmind)

Fermat’s Last Theorem project (led by Kevin Buzzard)

Equational theories (led by Terrence Tao)

Carleson project (led by FvD)

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 6 / 24



Exciting projects in Lean

Definition of a perfectoid space (Buzzard, Commelin, Massot)

Independence of the continuum hypothesis (FvD, Jesse Han)

Liquid Tensor Experiment (led by Commelin and Topaz)

Polynomial Freiman–Rusza conjecture (led by Terrence Tao)

Sphere eversion project (FvD, Massot, Nash)

AlphaProof used Lean to solve IMO problems (Google Deepmind)

Fermat’s Last Theorem project (led by Kevin Buzzard)

Equational theories (led by Terrence Tao)

Carleson project (led by FvD)

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 6 / 24



Exciting projects in Lean

Definition of a perfectoid space (Buzzard, Commelin, Massot)

Independence of the continuum hypothesis (FvD, Jesse Han)

Liquid Tensor Experiment (led by Commelin and Topaz)

Polynomial Freiman–Rusza conjecture (led by Terrence Tao)

Sphere eversion project (FvD, Massot, Nash)

AlphaProof used Lean to solve IMO problems (Google Deepmind)

Fermat’s Last Theorem project (led by Kevin Buzzard)

Equational theories (led by Terrence Tao)

Carleson project (led by FvD)

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 6 / 24



Fourier transform: Definition

Carleson’s theorem is an important theorem about the Fourier transform of
a function with a notoriously difficult proof.

Definition

Let f ∶ R→ C be an integrable function. Then its Fourier transform
Ff ∶ R→ C is defined as

Ff(ξ) ∶= ∫
R
f(x)e−2πiξx dx.

The inverse Fourier transform F−1 is

F−1g(x) ∶= ∫
R
g(ξ)e2πixξ dξ.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 7 / 24



Fourier transform: Definition

Carleson’s theorem is an important theorem about the Fourier transform of
a function with a notoriously difficult proof.

Definition

Let f ∶ R→ C be an integrable function. Then its Fourier transform
Ff ∶ R→ C is defined as

Ff(ξ) ∶= ∫
R
f(x)e−2πiξx dx.

The inverse Fourier transform F−1 is

F−1g(x) ∶= ∫
R
g(ξ)e2πixξ dξ.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 7 / 24



Fourier transform: Intuition

We think of the Fourier transform as decomposing a function into the
basis elements x↦ e2πixξ, like splitting a vector into basis
components.

These basis elements are eigenfunctions of the differentiation
operator. So (when f is C1):

F(f ′)(ξ) = 2πiξFf(ξ).

The decomposition is subtle, since the basis elements x↦ einx

themselves are not (square) integrable on R.
When f ∈ C1, then F−1Ff(x) = f(x) (Fourier inversion theorem).

However, if f is merely integrable, Ff need not need to be integrable.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 8 / 24



Example: Fourier transform of a box

Example: Let f ∶= χ
[−

1
2
, 1
2
]
be a box function. It has Fourier transform

Ff(ξ) = sin(πξ)
πξ

.

Note: Ff is not integrable on R.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 9 / 24



Improper integrals

If the function is not integrable, but locally integrable, we can define the
(inverse) Fourier transform using an improper integral:

Ff(ξ) ∶= lim
R→∞

∫
[−R,R]

f(x)e−2πiξx dx.

Important: Whether this limit converges depends on the topology you use
for this limit:

Pointwise convergence

Lp-convergence: ∥f∥pLp ∶= ∫ ∣f(x)∣pdx.

If f ∈ L2 (i.e. ∥f∥L2 < ∞) then Ff is well-defined using the L2-norm, and
Ff ∈ L2. In this case, we have F−1Ff = f w.r.t. to the L2-norm (Fourier
Inversion Theorem).

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 10 / 24



Improper integrals

If the function is not integrable, but locally integrable, we can define the
(inverse) Fourier transform using an improper integral:

Ff(ξ) ∶= lim
R→∞

∫
[−R,R]

f(x)e−2πiξx dx.

Important: Whether this limit converges depends on the topology you use
for this limit:

Pointwise convergence

Lp-convergence: ∥f∥pLp ∶= ∫ ∣f(x)∣pdx.

If f ∈ L2 (i.e. ∥f∥L2 < ∞) then Ff is well-defined using the L2-norm, and
Ff ∈ L2. In this case, we have F−1Ff = f w.r.t. to the L2-norm (Fourier
Inversion Theorem).

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 10 / 24



Improper integrals

If the function is not integrable, but locally integrable, we can define the
(inverse) Fourier transform using an improper integral:

Ff(ξ) ∶= lim
R→∞

∫
[−R,R]

f(x)e−2πiξx dx.

Important: Whether this limit converges depends on the topology you use
for this limit:

Pointwise convergence

Lp-convergence: ∥f∥pLp ∶= ∫ ∣f(x)∣pdx.

If f ∈ L2 (i.e. ∥f∥L2 < ∞) then Ff is well-defined using the L2-norm, and
Ff ∈ L2. In this case, we have F−1Ff = f w.r.t. to the L2-norm (Fourier
Inversion Theorem).

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 10 / 24



Carleson’s theorem

Theorem (Carleson–Hunt, 1968)

If f ∈ Lp for some 1 < p ≤ 2. Then for almost every x we have
F−1Ff(x) = f(x).

Carleson proved the case p = 2 in 1966.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 11 / 24



Carleson’s theorem: remarks

We cannot remove the “almost every” from the statement: even for
continuous L2 functions the limit might diverge for some x.

There are L1 functions where the limit defining F−1Ff(x) diverges
for all points x.

If f is a function in multiple variables, versions of Carleson’s theorem
also hold. One has to be very careful about the shape of the
integration domain that tends to infinity. If the shape is spherical,
then this is still an open problem.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 12 / 24



Generalized Carleson

The proof of Carleson’s theorem works by showing that the Carleson
operator is bounded:

Tf(x) ∶= sup
n∈Z
∣∫

R
f(y) 1

x − y e
inydy∣

We formalize a generalization of the Carleson’s theorem, which holds
when the domain of the function is an arbitrary doubling metric
measure space.

This was proven in 2023 by Lars Becker, Asgar Jamneshan, Rajula
Srivastava and Christoph Thiele.

I joined in late 2023 to start formalizing the 30-page proof.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 13 / 24



Blueprint

After a false start, the harmonic analysis group wrote a blueprint for the
proof of 120 pages, plus 30 pages to prove classical Carleson’s theorem as
a corollary.

This allows non-experts to take a single lemma and formalize it.

The blueprint has 11 sections.

Section 1: statement of the generalized (metric) Carleson’s theorem;

Section 2: statement of 6 propositions used in the proof;

Section 3: proof of metric Carleson from the propositions;

Sections 4-9: each section proves one of the 6 propositions;

Sections 10-11: proof of the classical Carleson theorem.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 14 / 24



Dependency Graph

Currently 138 out of 179 lemmas/theorems formalized

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 15 / 24



Dependency Graph

Currently 138 out of 179 lemmas/theorems formalized

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 15 / 24



Formalization

In June 2024 I publicly launched the formalization, and asked volunteers to
help.

Typically I state the lemmas and definitions in Lean, and then contributors
formalized the proof, following the blueprint.

Most contributors do not have a background in harmonic analysis.

The detailed blueprint allows contributors that are not familiar with
harmonic analysis to formalize the proofs.

The formalization is j.w.w. Maŕıa Inés de Frutos-Fernández, Leo
Diedering, Sébastien Gouëzel, Evgenia Karunus, Edward van de Meent,
Pietro Monticone, Jim Portegies, Michael Rothgang, James Sundstrom,
Jeremy Tan, and others.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 16 / 24



Collaboration with Lean

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 17 / 24



Collaboration with Lean

Lean enables big cooperations:

Individual contributors work on their own part of the proof.

Lean will ensure that the different parts fit together.

Lean allows for safe refactoring: When a definition or theorem is
reformulated, Lean will inform you of all the places that have to be
adapted.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 18 / 24



Collaboration with Lean

Lean enables big cooperations:

Individual contributors work on their own part of the proof.

Lean will ensure that the different parts fit together.

Lean allows for safe refactoring: When a definition or theorem is
reformulated, Lean will inform you of all the places that have to be
adapted.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 18 / 24



Carleson and Mathlib

The Carleson Project extensively uses Mathlib, using properties of
integration, metric spaces, measure theory, topology and much more.

The proof is a mix of preliminary results and results that are specific to
this proof.

We prove the preliminary results in high generality, so that they can be
upstreamed to the Mathlib, and reused for other proofs.

Examples are the Marcinkiewicz Interpolation Theorem and the
Hardy–Littlewood Maximal Principle.

The specific results aren’t necessarily done in the proper generality, and
their proofs do not follow Mathlib-standards.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 19 / 24



Design Decisions

In analysis/measure theory, three types are very important:
▸ The reals R;
▸ The nonnegative reals [0,∞) ⊆ R;
▸ The extended nonnegative reals [0,∞].

You have to choose which of these you want to use when stating a
result or definition.

There are canonical maps between them, not all of which behave
nicely.

It is annoying to reason about these maps and cancel them in proofs.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 20 / 24



Design Decisions

At first, in the Carleson project, we decided to just use R everywhere.
▸ All measures, integrals and suprema we work with should be finite.

This turned out to be the wrong decision.

▸ Even when a supremum (integral/measure) is provably finite, it is often
still easier to work with the version that lands in [0,∞].

▸ Mathlib likes to work with the operations in [0,∞].
We then transitioned into using [0,∞] extensively, and also
generalized some definitions in Mathlib to also work on [0,∞] (e.g.
the Lp-norm).

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 21 / 24



Design Decisions

At first, in the Carleson project, we decided to just use R everywhere.
▸ All measures, integrals and suprema we work with should be finite.

This turned out to be the wrong decision.
▸ Even when a supremum (integral/measure) is provably finite, it is often
still easier to work with the version that lands in [0,∞].

▸ Mathlib likes to work with the operations in [0,∞].

We then transitioned into using [0,∞] extensively, and also
generalized some definitions in Mathlib to also work on [0,∞] (e.g.
the Lp-norm).

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 21 / 24



Design Decisions

At first, in the Carleson project, we decided to just use R everywhere.
▸ All measures, integrals and suprema we work with should be finite.

This turned out to be the wrong decision.
▸ Even when a supremum (integral/measure) is provably finite, it is often
still easier to work with the version that lands in [0,∞].

▸ Mathlib likes to work with the operations in [0,∞].
We then transitioned into using [0,∞] extensively, and also
generalized some definitions in Mathlib to also work on [0,∞] (e.g.
the Lp-norm).

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 21 / 24



Carleson’s theorem in Lean

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 22 / 24



Carleson’s theorem in Lean

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 22 / 24



In conclusion

Lean is a language with a lot of exciting developments.

It is feasible to formalize current research in harmonic analysis.

Large formalization projects can be efficiently divided into small parts,
and with a detailed blueprint many people can efficiently contribute.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 23 / 24



Thank you for listening

https://florisvandoorn.com/carleson/

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 24 / 24

https://florisvandoorn.com/carleson/


Design Decisions

The Lp-norm is defined for functions that take values in a Banach space.

In harmonic analysis, we often work with suprema of multiple
(nonnegative) functions, e.g. the Hardy–Littlewood maximal function:

Mf(x) ∶= sup
B∋x

1

∣B∣ ∫B ∣f ∣.

These functions can equal ∞ on some values (usually only on a set of
measure 0), so their codomain is [0,∞], which is not a Banach space.

To conveniently deal formalize results about these functions, we extend
the definition of Lp-norm to also include functions into [0,∞]. This
requires axiomatizing the common structure of [0,∞] and Banach spaces.

Floris van Doorn (Bonn) The Carleson Project 7 April 2025 24 / 24


