Higher Groups in Homotopy Type Theory J

Ulrik Buchholtz Floris van Doorn Egbert Rijke
Technische Universitat Darmstadt Carnegie Mellon University
LICS 2018
July 9, 2018

Buchholtz, van Doorn, Rijke Higher Groups in HoTT LICS 2018 1/14



Homotopy Hypothesis

The homotopy hypothesis states:
homotopy n-types ~ n-groupoids

(n € Norn=o0)

Depending on the setting, this can be a theorem, conjecture or axiom.

In homotopy type theory, the types correspond to homotopy types, so we
can study the homotopy hypothesis in HoTT.
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Truncated and Connected Types
In HoTT types can be truncated (have trivial high-dimensional structure):

istrunc_y A :=iscontr A := (a: A) x ((z: 4) = (a = z))

istrunc, 1 A = (z y : A) — istrunc,(x = y)

The truncation ||A||,, is the universal n-truncated approximation of A.

We then also get connected types (have trivial low-dimensional structure):
isconn,, A := iscontr || A||,,
We define universes of pointed/truncated/connected types:

Typey := (A : Type) x (pt : A)
Type=" := (A : Type) x istrunc, A
Type”" := (A : Type) x isconn,, A
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Loop Spaces

A pointed (0-)connected type B : Type;t0 can be viewed as presenting a

higher group, with carrier
QB := (pt =p pt).

The group structure on 2B is induced form the identity type:

Multiplication is path concatenation
@ Inversion is path inversion

@ The unit is the constant path

°

Higher group laws correspond to higher coherences for paths.
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Higher Groups

Switching perspective, we can define a higher group to be a carrier
G : Type with a choice of delooping BG : Type.

oo-Group := (G : Type) x (BG : Type;to) x (G ~ QBG)

~ (G : Typey) x (BG : Type?) x (G 2 QBG)
~ Type;t0

We can define n-groups by assuming that the carrier is truncated G.

n-Group := (G : Typey") x (BG : Type;to) X (G ~p QBG)
>0,<n

~ Typept
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k-tuply Groupal Groupoids

Higher loop spaces are better-behaved. For example:

Theorem (Eckmann-Hilton)

For p,q : Q*A we have
p-q=q-p.

If the carrier G of an (n + 1)-group has k-fold deloopings, we say it is a
k-tuply groupal n-groupoid.

(n, k)GType := (G : Typey") x (B¥G : Typeg) x (G~ Q"B*G)

~ >k, <n+k
~ Typept

(n,w)GType := limy, (n, k)GType
~ (B G:(k:N)— Typegtk’§"+k)

x ((k:N) — B*G ~ QB*1Q).
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Periodic Table of Higher Groups

Table: Periodic table of k-tuply groupal n-groupoids, (n, k)GType.

E\n 0 1 2 0o
0 pointed set pointed groupoid pointed 2-groupoid pointed oco-groupoid
1 group 2-group 3-group oo-group
2 abelian group  braided 2-group braided 3-group braided co-group
3 —_r — symmetric 2-group  sylleptic 3-group sylleptic co-group
4 —_—r — —r — symmetric 3-group ?? oco-group
w —_—r— —_r — —_n— connective spectrum
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(De)categorification

k\n 0 1 2 00
0 pointed set pointed groupoid pointed 2-groupoid pointed oco-groupoid
1 group 2-group 3-group oco-group
2 abelian group  braided 2-group braided 3-group braided co-group
3 —r — symmetric 2-group  sylleptic 3-group sylleptic co-group
4 —r — —n — symmetric 3-group 77 co-group
w —_r — —_r — —_r — connective spectrum

discrete categorification Disc : (n, k)GType — (n + 1,k)GType N

(G, B*G) (G, B*G)

decategorification Decat : (n,k)GType — (n — 1,k)GType —

(G,B*G) = (|G lln-1, | B*Gllnsx-1)

Decat - Disc and Decat oDisc = id
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(De)looping

k\n 0 1 2 cee 00
0 pointed set pointed groupoid pointed 2-groupoid - -- pointed oco-groupoid
1 group 2-group 3-group cee oco-group
2 abelian group  braided 2-group braided 3-group braided co-group
3 —r — symmetric 2-group  sylleptic 3-group .-+ sylleptic co-group
4 —r — —n — symmetric 3-group - -- 77 co-group
w —_r — —_r — —_r — v connective spectrum
looping € : (n k)GType — (n — 1,k + 1)GType /
(G B"G) ~ (9G, B*G(k))
delooping B : (n,k)GType — (n+ 1,k — 1)GType /(

(G, B’“G) (QF1BFG, BkG>
B-HO and NQoB=id
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Stabilization

k\n 0 1 2 00
0 pointed set pointed groupoid pointed 2-groupoid pointed oco-groupoid
1 group 2-group 3-group oco-group
2 abelian group  braided 2-group braided 3-group braided co-group
3 —r — symmetric 2-group  sylleptic 3-group sylleptic co-group
4 —r — —n — symmetric 3-group 77 co-group
w —_r — —_r — —_r — connective spectrum

forgetting F': (n,k)GType — (n,k — 1)GType
(G, B*G) — (G, QB*G)
stabilization S': (n, k)GType — (n,k + 1)GType

(G, B*G) = (|9 EB G, |EB*Cllns141)

SHF
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Formalization in Lean

Theorem

If G, H : (n,k)GType then hom, (G, H) := B*G —4 B"H is
n-truncated. Hence (n,k)GType is (n + 1)-truncated.

Theorem (Set-level groups)

We have the following equivalences of categories:
(0,0)GType =~ Setpy;

(0,1)GType ~ Group;
(0, k)GType ~ AbGroup (for k > 2).

Theorem (Stabilization)

Ifk>n+2, then S : (n,k)GType — (n,k + 1)GType is an equivalence,
and any G : (n,k)GType is an infinite loop space.

v
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Examples

o The integers has delooping BZ = S'.
@ The free 1-group on a set X has delooping BFx = [|X(X + 1)||;.

@ The automorphism group of a : A is Auta := (a = a), with delooping
BAuta:=im(a:1— A)=(z: A) X |la=x|-1.

e The fundamental n-group of (A, a) is II,,(4,a) := ||a = a||,—1, the
decategorification of the automorphism group.

@ The symmetric groups S,, := Aut(fin,,) has as delooping the
n-element sets BS,, = (A : Type) x ||A ~ fin, || 1.
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Actions

@ A G-action on a: A is a homomorphism G — Aut a, or equivalently,
a pointed map BG —¢ (4, a)

A G-type is a function X : BG — Type, that is, an action on a type.
@ The homotopy fixed points or invariants are

XhG .= (z: BG) = X(2).

@ The homotopy orbit space or coinvariants are
X )G :=(z: BG) x X(2).

The stabilizer of z : X (pt) is G5 := Aut((pt,z) : X J/ G)
The orbit of z : X(pt) is

G-z = (y: X(pt) x [[{pt, 2) = (pt,y)[|-1-

Theorem (Orbit-Stabilizer Theorem)
For x : X (pt) we have G J/ G, ~ G - x. J
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Concluding Remarks

@ Homotopy type theory gives a convenient language for higher group
theory.
@ We can do higher group theory. There is more in the paper.

@ Future work: prove that more entries of the periodic table are
equivalent to the classical definition.
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