// Boost Software License - Version 1.0 - August 17th, 2003 // // Permission is hereby granted, free of charge, to any person or organization // obtaining a copy of the software and accompanying documentation covered by // this license (the "Software") to use, reproduce, display, distribute, // execute, and transmit the Software, and to prepare derivative works of the // Software, and to permit third-parties to whom the Software is furnished to // do so, all subject to the following: // // The copyright notices in the Software and this entire statement, including // the above license grant, this restriction and the following disclaimer, // must be included in all copies of the Software, in whole or in part, and // all derivative works of the Software, unless such copies or derivative // works are solely in the form of machine-executable object code generated by // a source language processor. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // The contents of this file is extracted from https://github.com/night-shift/fpconv // It was slightly modified to append ".0" to plain floats, for use with the https://github.com/ruby/json package. #include #include #include #define npowers 87 #define steppowers 8 #define firstpower -348 /* 10 ^ -348 */ #define expmax -32 #define expmin -60 typedef struct Fp { uint64_t frac; int exp; } Fp; static Fp powers_ten[] = { { 18054884314459144840U, -1220 }, { 13451937075301367670U, -1193 }, { 10022474136428063862U, -1166 }, { 14934650266808366570U, -1140 }, { 11127181549972568877U, -1113 }, { 16580792590934885855U, -1087 }, { 12353653155963782858U, -1060 }, { 18408377700990114895U, -1034 }, { 13715310171984221708U, -1007 }, { 10218702384817765436U, -980 }, { 15227053142812498563U, -954 }, { 11345038669416679861U, -927 }, { 16905424996341287883U, -901 }, { 12595523146049147757U, -874 }, { 9384396036005875287U, -847 }, { 13983839803942852151U, -821 }, { 10418772551374772303U, -794 }, { 15525180923007089351U, -768 }, { 11567161174868858868U, -741 }, { 17236413322193710309U, -715 }, { 12842128665889583758U, -688 }, { 9568131466127621947U, -661 }, { 14257626930069360058U, -635 }, { 10622759856335341974U, -608 }, { 15829145694278690180U, -582 }, { 11793632577567316726U, -555 }, { 17573882009934360870U, -529 }, { 13093562431584567480U, -502 }, { 9755464219737475723U, -475 }, { 14536774485912137811U, -449 }, { 10830740992659433045U, -422 }, { 16139061738043178685U, -396 }, { 12024538023802026127U, -369 }, { 17917957937422433684U, -343 }, { 13349918974505688015U, -316 }, { 9946464728195732843U, -289 }, { 14821387422376473014U, -263 }, { 11042794154864902060U, -236 }, { 16455045573212060422U, -210 }, { 12259964326927110867U, -183 }, { 18268770466636286478U, -157 }, { 13611294676837538539U, -130 }, { 10141204801825835212U, -103 }, { 15111572745182864684U, -77 }, { 11258999068426240000U, -50 }, { 16777216000000000000U, -24 }, { 12500000000000000000U, 3 }, { 9313225746154785156U, 30 }, { 13877787807814456755U, 56 }, { 10339757656912845936U, 83 }, { 15407439555097886824U, 109 }, { 11479437019748901445U, 136 }, { 17105694144590052135U, 162 }, { 12744735289059618216U, 189 }, { 9495567745759798747U, 216 }, { 14149498560666738074U, 242 }, { 10542197943230523224U, 269 }, { 15709099088952724970U, 295 }, { 11704190886730495818U, 322 }, { 17440603504673385349U, 348 }, { 12994262207056124023U, 375 }, { 9681479787123295682U, 402 }, { 14426529090290212157U, 428 }, { 10748601772107342003U, 455 }, { 16016664761464807395U, 481 }, { 11933345169920330789U, 508 }, { 17782069995880619868U, 534 }, { 13248674568444952270U, 561 }, { 9871031767461413346U, 588 }, { 14708983551653345445U, 614 }, { 10959046745042015199U, 641 }, { 16330252207878254650U, 667 }, { 12166986024289022870U, 694 }, { 18130221999122236476U, 720 }, { 13508068024458167312U, 747 }, { 10064294952495520794U, 774 }, { 14996968138956309548U, 800 }, { 11173611982879273257U, 827 }, { 16649979327439178909U, 853 }, { 12405201291620119593U, 880 }, { 9242595204427927429U, 907 }, { 13772540099066387757U, 933 }, { 10261342003245940623U, 960 }, { 15290591125556738113U, 986 }, { 11392378155556871081U, 1013 }, { 16975966327722178521U, 1039 }, { 12648080533535911531U, 1066 } }; static Fp find_cachedpow10(int exp, int* k) { const double one_log_ten = 0.30102999566398114; int approx = -(exp + npowers) * one_log_ten; int idx = (approx - firstpower) / steppowers; while(1) { int current = exp + powers_ten[idx].exp + 64; if(current < expmin) { idx++; continue; } if(current > expmax) { idx--; continue; } *k = (firstpower + idx * steppowers); return powers_ten[idx]; } } #define fracmask 0x000FFFFFFFFFFFFFU #define expmask 0x7FF0000000000000U #define hiddenbit 0x0010000000000000U #define signmask 0x8000000000000000U #define expbias (1023 + 52) #define absv(n) ((n) < 0 ? -(n) : (n)) #define minv(a, b) ((a) < (b) ? (a) : (b)) static uint64_t tens[] = { 10000000000000000000U, 1000000000000000000U, 100000000000000000U, 10000000000000000U, 1000000000000000U, 100000000000000U, 10000000000000U, 1000000000000U, 100000000000U, 10000000000U, 1000000000U, 100000000U, 10000000U, 1000000U, 100000U, 10000U, 1000U, 100U, 10U, 1U }; static inline uint64_t get_dbits(double d) { union { double dbl; uint64_t i; } dbl_bits = { d }; return dbl_bits.i; } static Fp build_fp(double d) { uint64_t bits = get_dbits(d); Fp fp; fp.frac = bits & fracmask; fp.exp = (bits & expmask) >> 52; if(fp.exp) { fp.frac += hiddenbit; fp.exp -= expbias; } else { fp.exp = -expbias + 1; } return fp; } static void normalize(Fp* fp) { while ((fp->frac & hiddenbit) == 0) { fp->frac <<= 1; fp->exp--; } int shift = 64 - 52 - 1; fp->frac <<= shift; fp->exp -= shift; } static void get_normalized_boundaries(Fp* fp, Fp* lower, Fp* upper) { upper->frac = (fp->frac << 1) + 1; upper->exp = fp->exp - 1; while ((upper->frac & (hiddenbit << 1)) == 0) { upper->frac <<= 1; upper->exp--; } int u_shift = 64 - 52 - 2; upper->frac <<= u_shift; upper->exp = upper->exp - u_shift; int l_shift = fp->frac == hiddenbit ? 2 : 1; lower->frac = (fp->frac << l_shift) - 1; lower->exp = fp->exp - l_shift; lower->frac <<= lower->exp - upper->exp; lower->exp = upper->exp; } static Fp multiply(Fp* a, Fp* b) { const uint64_t lomask = 0x00000000FFFFFFFF; uint64_t ah_bl = (a->frac >> 32) * (b->frac & lomask); uint64_t al_bh = (a->frac & lomask) * (b->frac >> 32); uint64_t al_bl = (a->frac & lomask) * (b->frac & lomask); uint64_t ah_bh = (a->frac >> 32) * (b->frac >> 32); uint64_t tmp = (ah_bl & lomask) + (al_bh & lomask) + (al_bl >> 32); /* round up */ tmp += 1U << 31; Fp fp = { ah_bh + (ah_bl >> 32) + (al_bh >> 32) + (tmp >> 32), a->exp + b->exp + 64 }; return fp; } static void round_digit(char* digits, int ndigits, uint64_t delta, uint64_t rem, uint64_t kappa, uint64_t frac) { while (rem < frac && delta - rem >= kappa && (rem + kappa < frac || frac - rem > rem + kappa - frac)) { digits[ndigits - 1]--; rem += kappa; } } static int generate_digits(Fp* fp, Fp* upper, Fp* lower, char* digits, int* K) { uint64_t wfrac = upper->frac - fp->frac; uint64_t delta = upper->frac - lower->frac; Fp one; one.frac = 1ULL << -upper->exp; one.exp = upper->exp; uint64_t part1 = upper->frac >> -one.exp; uint64_t part2 = upper->frac & (one.frac - 1); int idx = 0, kappa = 10; uint64_t* divp; /* 1000000000 */ for(divp = tens + 10; kappa > 0; divp++) { uint64_t div = *divp; unsigned digit = (unsigned) (part1 / div); if (digit || idx) { digits[idx++] = digit + '0'; } part1 -= digit * div; kappa--; uint64_t tmp = (part1 <<-one.exp) + part2; if (tmp <= delta) { *K += kappa; round_digit(digits, idx, delta, tmp, div << -one.exp, wfrac); return idx; } } /* 10 */ uint64_t* unit = tens + 18; while(true) { part2 *= 10; delta *= 10; kappa--; unsigned digit = (unsigned) (part2 >> -one.exp); if (digit || idx) { digits[idx++] = digit + '0'; } part2 &= one.frac - 1; if (part2 < delta) { *K += kappa; round_digit(digits, idx, delta, part2, one.frac, wfrac * *unit); return idx; } unit--; } } static int grisu2(double d, char* digits, int* K) { Fp w = build_fp(d); Fp lower, upper; get_normalized_boundaries(&w, &lower, &upper); normalize(&w); int k; Fp cp = find_cachedpow10(upper.exp, &k); w = multiply(&w, &cp); upper = multiply(&upper, &cp); lower = multiply(&lower, &cp); lower.frac++; upper.frac--; *K = -k; return generate_digits(&w, &upper, &lower, digits, K); } static int emit_digits(char* digits, int ndigits, char* dest, int K, bool neg) { int exp = absv(K + ndigits - 1); int max_trailing_zeros = 7; if(neg) { max_trailing_zeros -= 1; } /* write plain integer */ if(K >= 0 && (exp < (ndigits + max_trailing_zeros))) { memcpy(dest, digits, ndigits); memset(dest + ndigits, '0', K); /* add a .0 to mark this as a float. */ dest[ndigits + K] = '.'; dest[ndigits + K + 1] = '0'; return ndigits + K + 2; } /* write decimal w/o scientific notation */ if(K < 0 && (K > -7 || exp < 4)) { int offset = ndigits - absv(K); /* fp < 1.0 -> write leading zero */ if(offset <= 0) { offset = -offset; dest[0] = '0'; dest[1] = '.'; memset(dest + 2, '0', offset); memcpy(dest + offset + 2, digits, ndigits); return ndigits + 2 + offset; /* fp > 1.0 */ } else { memcpy(dest, digits, offset); dest[offset] = '.'; memcpy(dest + offset + 1, digits + offset, ndigits - offset); return ndigits + 1; } } /* write decimal w/ scientific notation */ ndigits = minv(ndigits, 18 - neg); int idx = 0; dest[idx++] = digits[0]; if(ndigits > 1) { dest[idx++] = '.'; memcpy(dest + idx, digits + 1, ndigits - 1); idx += ndigits - 1; } dest[idx++] = 'e'; char sign = K + ndigits - 1 < 0 ? '-' : '+'; dest[idx++] = sign; int cent = 0; if(exp > 99) { cent = exp / 100; dest[idx++] = cent + '0'; exp -= cent * 100; } if(exp > 9) { int dec = exp / 10; dest[idx++] = dec + '0'; exp -= dec * 10; } else if(cent) { dest[idx++] = '0'; } dest[idx++] = exp % 10 + '0'; return idx; } static int filter_special(double fp, char* dest) { if(fp == 0.0) { dest[0] = '0'; dest[1] = '.'; dest[2] = '0'; return 3; } uint64_t bits = get_dbits(fp); bool nan = (bits & expmask) == expmask; if(!nan) { return 0; } if(bits & fracmask) { dest[0] = 'n'; dest[1] = 'a'; dest[2] = 'n'; } else { dest[0] = 'i'; dest[1] = 'n'; dest[2] = 'f'; } return 3; } /* Fast and accurate double to string conversion based on Florian Loitsch's * Grisu-algorithm[1]. * * Input: * fp -> the double to convert, dest -> destination buffer. * The generated string will never be longer than 24 characters. * Make sure to pass a pointer to at least 24 bytes of memory. * The emitted string will not be null terminated. * * Output: * The number of written characters. * * Exemplary usage: * * void print(double d) * { * char buf[24 + 1] // plus null terminator * int str_len = fpconv_dtoa(d, buf); * * buf[str_len] = '\0'; * printf("%s", buf); * } * */ static int fpconv_dtoa(double d, char dest[24]) { char digits[18]; int str_len = 0; bool neg = false; if(get_dbits(d) & signmask) { dest[0] = '-'; str_len++; neg = true; } int spec = filter_special(d, dest + str_len); if(spec) { return str_len + spec; } int K = 0; int ndigits = grisu2(d, digits, &K); str_len += emit_digits(digits, ndigits, dest + str_len, K, neg); return str_len; }