#include "internal.h" #include "internal/sanitizers.h" #include "internal/string.h" #include "internal/hash.h" #include "internal/variable.h" #include "internal/compile.h" #include "internal/class.h" #include "internal/fixnum.h" #include "internal/numeric.h" #include "internal/gc.h" #include "internal/vm.h" #include "vm_core.h" #include "vm_callinfo.h" #include "builtin.h" #include "insns.inc" #include "insns_info.inc" #include "vm_sync.h" #include "vm_insnhelper.h" #include "probes.h" #include "probes_helper.h" #include "iseq.h" #include "ruby/debug.h" #include "internal/cont.h" #include "zjit.h" // For mmapp(), sysconf() #ifndef _WIN32 #include #include #endif #include uint32_t rb_zjit_get_page_size(void) { #if defined(_SC_PAGESIZE) long page_size = sysconf(_SC_PAGESIZE); if (page_size <= 0) rb_bug("zjit: failed to get page size"); // 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected. // Though our design sort of assume we have fine grained control over memory protection // which require small page sizes. if (page_size > 0x40000000l) rb_bug("zjit page size too large"); return (uint32_t)page_size; #else #error "ZJIT supports POSIX only for now" #endif } #if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE) // Align the current write position to a multiple of bytes static uint8_t * align_ptr(uint8_t *ptr, uint32_t multiple) { // Compute the pointer modulo the given alignment boundary uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple; // If the pointer is already aligned, stop if (rem == 0) return ptr; // Pad the pointer by the necessary amount to align it uint32_t pad = multiple - rem; return ptr + pad; } #endif // Address space reservation. Memory pages are mapped on an as needed basis. // See the Rust mm module for details. uint8_t * rb_zjit_reserve_addr_space(uint32_t mem_size) { #ifndef _WIN32 uint8_t *mem_block; // On Linux #if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE) uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE); uint8_t *const cfunc_sample_addr = (void *)(uintptr_t)&rb_zjit_reserve_addr_space; uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX; // Align the requested address to page size uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size); // Probe for addresses close to this function using MAP_FIXED_NOREPLACE // to improve odds of being in range for 32-bit relative call instructions. do { mem_block = mmap( req_addr, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE, -1, 0 ); // If we succeeded, stop if (mem_block != MAP_FAILED) { ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space"); break; } // -4MiB. Downwards to probe away from the heap. (On x86/A64 Linux // main_code_addr < heap_addr, and in case we are in a shared // library mapped higher than the heap, downwards is still better // since it's towards the end of the heap rather than the stack.) req_addr -= 4 * 1024 * 1024; } while (req_addr < probe_region_end); // On MacOS and other platforms #else // Try to map a chunk of memory as executable mem_block = mmap( (void *)rb_zjit_reserve_addr_space, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 ); #endif // Fallback if (mem_block == MAP_FAILED) { // Try again without the address hint (e.g., valgrind) mem_block = mmap( NULL, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 ); if (mem_block != MAP_FAILED) { ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space:fallback"); } } // Check that the memory mapping was successful if (mem_block == MAP_FAILED) { perror("ruby: zjit: mmap:"); if(errno == ENOMEM) { // No crash report if it's only insufficient memory exit(EXIT_FAILURE); } rb_bug("mmap failed"); } return mem_block; #else // Windows not supported for now return NULL; #endif } void rb_zjit_profile_disable(const rb_iseq_t *iseq); void rb_zjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec, bool jit_exception) { RB_VM_LOCK_ENTER(); rb_vm_barrier(); // Convert ZJIT instructions back to bare instructions rb_zjit_profile_disable(iseq); // Compile a block version starting at the current instruction uint8_t *rb_zjit_iseq_gen_entry_point(const rb_iseq_t *iseq, rb_execution_context_t *ec); // defined in Rust uintptr_t code_ptr = (uintptr_t)rb_zjit_iseq_gen_entry_point(iseq, ec); // TODO: support jit_exception iseq->body->jit_entry = (rb_jit_func_t)code_ptr; RB_VM_LOCK_LEAVE(); } extern VALUE *rb_vm_base_ptr(struct rb_control_frame_struct *cfp); bool rb_zjit_multi_ractor_p(void) { return rb_multi_ractor_p(); } bool rb_zjit_constcache_shareable(const struct iseq_inline_constant_cache_entry *ice) { return (ice->flags & IMEMO_CONST_CACHE_SHAREABLE) != 0; } // Release the VM lock. The lock level must point to the same integer used to // acquire the lock. void rb_zjit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line) { rb_vm_lock_leave(recursive_lock_level, file, line); } bool rb_zjit_mark_writable(void *mem_block, uint32_t mem_size) { return mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE) == 0; } void rb_zjit_mark_executable(void *mem_block, uint32_t mem_size) { // Do not call mprotect when mem_size is zero. Some platforms may return // an error for it. https://github.com/Shopify/ruby/issues/450 if (mem_size == 0) { return; } if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) { rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s", mem_block, (unsigned long)mem_size, strerror(errno)); } } // Free the specified memory block. bool rb_zjit_mark_unused(void *mem_block, uint32_t mem_size) { // On Linux, you need to use madvise MADV_DONTNEED to free memory. // We might not need to call this on macOS, but it's not really documented. // We generally prefer to do the same thing on both to ease testing too. madvise(mem_block, mem_size, MADV_DONTNEED); // On macOS, mprotect PROT_NONE seems to reduce RSS. // We also call this on Linux to avoid executing unused pages. return mprotect(mem_block, mem_size, PROT_NONE) == 0; } // Invalidate icache for arm64. // `start` is inclusive and `end` is exclusive. void rb_zjit_icache_invalidate(void *start, void *end) { // Clear/invalidate the instruction cache. Compiles to nothing on x86_64 // but required on ARM before running freshly written code. // On Darwin it's the same as calling sys_icache_invalidate(). #ifdef __GNUC__ __builtin___clear_cache(start, end); #elif defined(__aarch64__) #error No instruction cache clear available with this compiler on Aarch64! #endif } // Acquire the VM lock and then signal all other Ruby threads (ractors) to // contend for the VM lock, putting them to sleep. ZJIT uses this to evict // threads running inside generated code so among other things, it can // safely change memory protection of regions housing generated code. void rb_zjit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line) { rb_vm_lock_enter(recursive_lock_level, file, line); rb_vm_barrier(); } // Convert a given ISEQ's instructions to zjit_* instructions void rb_zjit_profile_enable(const rb_iseq_t *iseq) { // This table encodes an opcode into the instruction's address const void *const *insn_table = rb_vm_get_insns_address_table(); unsigned int insn_idx = 0; while (insn_idx < iseq->body->iseq_size) { int insn = rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[insn_idx]); int zjit_insn = vm_bare_insn_to_zjit_insn(insn); if (insn != zjit_insn) { iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[zjit_insn]; } insn_idx += insn_len(insn); } } // Convert a given ISEQ's ZJIT instructions to bare instructions void rb_zjit_profile_disable(const rb_iseq_t *iseq) { // This table encodes an opcode into the instruction's address const void *const *insn_table = rb_vm_get_insns_address_table(); unsigned int insn_idx = 0; while (insn_idx < iseq->body->iseq_size) { int insn = rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[insn_idx]); int bare_insn = vm_zjit_insn_to_bare_insn(insn); if (insn != bare_insn) { iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[bare_insn]; } insn_idx += insn_len(insn); } } // Get profiling information for ISEQ void * rb_iseq_get_zjit_payload(const rb_iseq_t *iseq) { RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq)); if (iseq->body) { return iseq->body->zjit_payload; } else { // Body is NULL when constructing the iseq. return NULL; } } // Set profiling information for ISEQ void rb_iseq_set_zjit_payload(const rb_iseq_t *iseq, void *payload) { RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq)); RUBY_ASSERT_ALWAYS(iseq->body); RUBY_ASSERT_ALWAYS(NULL == iseq->body->zjit_payload); iseq->body->zjit_payload = payload; } // Primitives used by zjit.rb VALUE rb_zjit_assert_compiles(rb_execution_context_t *ec, VALUE self); void rb_zjit_print_exception(void) { VALUE exception = rb_errinfo(); rb_set_errinfo(Qnil); assert(RTEST(exception)); rb_warn("Ruby error: %"PRIsVALUE"", rb_funcall(exception, rb_intern("full_message"), 0)); } // Preprocessed zjit.rb generated during build #include "zjit.rbinc"