#include "internal.h" #include "internal/sanitizers.h" #include "internal/string.h" #include "internal/hash.h" #include "internal/variable.h" #include "internal/compile.h" #include "internal/class.h" #include "internal/fixnum.h" #include "internal/numeric.h" #include "internal/gc.h" #include "internal/vm.h" #include "vm_core.h" #include "vm_callinfo.h" #include "builtin.h" #include "insns.inc" #include "insns_info.inc" #include "vm_sync.h" #include "vm_insnhelper.h" #include "probes.h" #include "probes_helper.h" #include "iseq.h" #include "ruby/debug.h" #include "internal/cont.h" #include "zjit.h" // For mmapp(), sysconf() #ifndef _WIN32 #include #include #endif #include uint32_t rb_zjit_get_page_size(void) { #if defined(_SC_PAGESIZE) long page_size = sysconf(_SC_PAGESIZE); if (page_size <= 0) rb_bug("zjit: failed to get page size"); // 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected. // Though our design sort of assume we have fine grained control over memory protection // which require small page sizes. if (page_size > 0x40000000l) rb_bug("zjit page size too large"); return (uint32_t)page_size; #else #error "ZJIT supports POSIX only for now" #endif } #if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE) // Align the current write position to a multiple of bytes static uint8_t * align_ptr(uint8_t *ptr, uint32_t multiple) { // Compute the pointer modulo the given alignment boundary uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple; // If the pointer is already aligned, stop if (rem == 0) return ptr; // Pad the pointer by the necessary amount to align it uint32_t pad = multiple - rem; return ptr + pad; } #endif // Address space reservation. Memory pages are mapped on an as needed basis. // See the Rust mm module for details. uint8_t * rb_zjit_reserve_addr_space(uint32_t mem_size) { #ifndef _WIN32 uint8_t *mem_block; // On Linux #if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE) uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE); uint8_t *const cfunc_sample_addr = (void *)(uintptr_t)&rb_zjit_reserve_addr_space; uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX; // Align the requested address to page size uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size); // Probe for addresses close to this function using MAP_FIXED_NOREPLACE // to improve odds of being in range for 32-bit relative call instructions. do { mem_block = mmap( req_addr, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE, -1, 0 ); // If we succeeded, stop if (mem_block != MAP_FAILED) { ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space"); break; } // -4MiB. Downwards to probe away from the heap. (On x86/A64 Linux // main_code_addr < heap_addr, and in case we are in a shared // library mapped higher than the heap, downwards is still better // since it's towards the end of the heap rather than the stack.) req_addr -= 4 * 1024 * 1024; } while (req_addr < probe_region_end); // On MacOS and other platforms #else // Try to map a chunk of memory as executable mem_block = mmap( (void *)rb_zjit_reserve_addr_space, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 ); #endif // Fallback if (mem_block == MAP_FAILED) { // Try again without the address hint (e.g., valgrind) mem_block = mmap( NULL, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 ); if (mem_block != MAP_FAILED) { ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_zjit_reserve_addr_space:fallback"); } } // Check that the memory mapping was successful if (mem_block == MAP_FAILED) { perror("ruby: zjit: mmap:"); if(errno == ENOMEM) { // No crash report if it's only insufficient memory exit(EXIT_FAILURE); } rb_bug("mmap failed"); } return mem_block; #else // Windows not supported for now return NULL; #endif } unsigned long rb_RSTRING_LEN(VALUE str) { return RSTRING_LEN(str); } char * rb_RSTRING_PTR(VALUE str) { return RSTRING_PTR(str); } void rb_zjit_profile_disable(const rb_iseq_t *iseq); void rb_zjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec, bool jit_exception) { RB_VM_LOCK_ENTER(); rb_vm_barrier(); // Convert ZJIT instructions back to bare instructions rb_zjit_profile_disable(iseq); // Compile a block version starting at the current instruction uint8_t *rb_zjit_iseq_gen_entry_point(const rb_iseq_t *iseq, rb_execution_context_t *ec); // defined in Rust uintptr_t code_ptr = (uintptr_t)rb_zjit_iseq_gen_entry_point(iseq, ec); // TODO: support jit_exception iseq->body->jit_entry = (rb_jit_func_t)code_ptr; RB_VM_LOCK_LEAVE(); } unsigned int rb_iseq_encoded_size(const rb_iseq_t *iseq) { return iseq->body->iseq_size; } // Get the opcode given a program counter. Can return trace opcode variants. int rb_iseq_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc) { // ZJIT should only use iseqs after AST to bytecode compilation RUBY_ASSERT_ALWAYS(FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)); const VALUE at_pc = *pc; return rb_vm_insn_addr2opcode((const void *)at_pc); } // Get the PC for a given index in an iseq VALUE * rb_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx) { RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq)); RUBY_ASSERT_ALWAYS(insn_idx < iseq->body->iseq_size); VALUE *encoded = iseq->body->iseq_encoded; VALUE *pc = &encoded[insn_idx]; return pc; } const char * rb_insn_name(VALUE insn) { return insn_name(insn); } struct rb_control_frame_struct * rb_get_ec_cfp(const rb_execution_context_t *ec) { return ec->cfp; } const rb_iseq_t * rb_get_cfp_iseq(struct rb_control_frame_struct *cfp) { return cfp->iseq; } VALUE * rb_get_cfp_pc(struct rb_control_frame_struct *cfp) { return (VALUE*)cfp->pc; } VALUE * rb_get_cfp_sp(struct rb_control_frame_struct *cfp) { return cfp->sp; } VALUE rb_get_cfp_self(struct rb_control_frame_struct *cfp) { return cfp->self; } VALUE * rb_get_cfp_ep(struct rb_control_frame_struct *cfp) { return (VALUE*)cfp->ep; } const VALUE * rb_get_cfp_ep_level(struct rb_control_frame_struct *cfp, uint32_t lv) { uint32_t i; const VALUE *ep = (VALUE*)cfp->ep; for (i = 0; i < lv; i++) { ep = VM_ENV_PREV_EP(ep); } return ep; } extern VALUE *rb_vm_base_ptr(struct rb_control_frame_struct *cfp); rb_method_type_t rb_get_cme_def_type(const rb_callable_method_entry_t *cme) { if (UNDEFINED_METHOD_ENTRY_P(cme)) { return VM_METHOD_TYPE_UNDEF; } else { return cme->def->type; } } ID rb_get_cme_def_body_attr_id(const rb_callable_method_entry_t *cme) { return cme->def->body.attr.id; } enum method_optimized_type rb_get_cme_def_body_optimized_type(const rb_callable_method_entry_t *cme) { return cme->def->body.optimized.type; } unsigned int rb_get_cme_def_body_optimized_index(const rb_callable_method_entry_t *cme) { return cme->def->body.optimized.index; } rb_method_cfunc_t * rb_get_cme_def_body_cfunc(const rb_callable_method_entry_t *cme) { return UNALIGNED_MEMBER_PTR(cme->def, body.cfunc); } uintptr_t rb_get_def_method_serial(const rb_method_definition_t *def) { return def->method_serial; } ID rb_get_def_original_id(const rb_method_definition_t *def) { return def->original_id; } int rb_get_mct_argc(const rb_method_cfunc_t *mct) { return mct->argc; } void * rb_get_mct_func(const rb_method_cfunc_t *mct) { return (void*)(uintptr_t)mct->func; // this field is defined as type VALUE (*func)(ANYARGS) } const rb_iseq_t * rb_get_def_iseq_ptr(rb_method_definition_t *def) { return def_iseq_ptr(def); } const rb_iseq_t * rb_get_iseq_body_local_iseq(const rb_iseq_t *iseq) { return iseq->body->local_iseq; } VALUE * rb_get_iseq_body_iseq_encoded(const rb_iseq_t *iseq) { return iseq->body->iseq_encoded; } unsigned rb_get_iseq_body_stack_max(const rb_iseq_t *iseq) { return iseq->body->stack_max; } enum rb_iseq_type rb_get_iseq_body_type(const rb_iseq_t *iseq) { return iseq->body->type; } bool rb_get_iseq_flags_has_lead(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_lead; } bool rb_get_iseq_flags_has_opt(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_opt; } bool rb_get_iseq_flags_has_kw(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_kw; } bool rb_get_iseq_flags_has_post(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_post; } bool rb_get_iseq_flags_has_kwrest(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_kwrest; } bool rb_get_iseq_flags_anon_kwrest(const rb_iseq_t *iseq) { return iseq->body->param.flags.anon_kwrest; } bool rb_get_iseq_flags_has_rest(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_rest; } bool rb_get_iseq_flags_ruby2_keywords(const rb_iseq_t *iseq) { return iseq->body->param.flags.ruby2_keywords; } bool rb_get_iseq_flags_has_block(const rb_iseq_t *iseq) { return iseq->body->param.flags.has_block; } bool rb_get_iseq_flags_ambiguous_param0(const rb_iseq_t *iseq) { return iseq->body->param.flags.ambiguous_param0; } bool rb_get_iseq_flags_accepts_no_kwarg(const rb_iseq_t *iseq) { return iseq->body->param.flags.accepts_no_kwarg; } bool rb_get_iseq_flags_forwardable(const rb_iseq_t *iseq) { return iseq->body->param.flags.forwardable; } // This is defined only as a named struct inside rb_iseq_constant_body. // By giving it a separate typedef, we make it nameable by rust-bindgen. // Bindgen's temp/anon name isn't guaranteed stable. typedef struct rb_iseq_param_keyword rb_iseq_param_keyword_struct; const rb_iseq_param_keyword_struct * rb_get_iseq_body_param_keyword(const rb_iseq_t *iseq) { return iseq->body->param.keyword; } unsigned rb_get_iseq_body_param_size(const rb_iseq_t *iseq) { return iseq->body->param.size; } int rb_get_iseq_body_param_lead_num(const rb_iseq_t *iseq) { return iseq->body->param.lead_num; } int rb_get_iseq_body_param_opt_num(const rb_iseq_t *iseq) { return iseq->body->param.opt_num; } const VALUE * rb_get_iseq_body_param_opt_table(const rb_iseq_t *iseq) { return iseq->body->param.opt_table; } unsigned int rb_get_iseq_body_local_table_size(const rb_iseq_t *iseq) { return iseq->body->local_table_size; } int rb_get_cikw_keyword_len(const struct rb_callinfo_kwarg *cikw) { return cikw->keyword_len; } VALUE rb_get_cikw_keywords_idx(const struct rb_callinfo_kwarg *cikw, int idx) { return cikw->keywords[idx]; } const struct rb_callinfo * rb_get_call_data_ci(const struct rb_call_data *cd) { return cd->ci; } // The FL_TEST() macro VALUE rb_FL_TEST(VALUE obj, VALUE flags) { return RB_FL_TEST(obj, flags); } // The FL_TEST_RAW() macro, normally an internal implementation detail VALUE rb_FL_TEST_RAW(VALUE obj, VALUE flags) { return FL_TEST_RAW(obj, flags); } // The RB_TYPE_P macro bool rb_RB_TYPE_P(VALUE obj, enum ruby_value_type t) { return RB_TYPE_P(obj, t); } long rb_RSTRUCT_LEN(VALUE st) { return RSTRUCT_LEN(st); } bool rb_BASIC_OP_UNREDEFINED_P(enum ruby_basic_operators bop, uint32_t klass) { return BASIC_OP_UNREDEFINED_P(bop, klass); } // For debug builds void rb_assert_iseq_handle(VALUE handle) { RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_iseq)); } void rb_assert_cme_handle(VALUE handle) { RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(handle)); RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_ment)); } int rb_IMEMO_TYPE_P(VALUE imemo, enum imemo_type imemo_type) { return IMEMO_TYPE_P(imemo, imemo_type); } // Release the VM lock. The lock level must point to the same integer used to // acquire the lock. void rb_zjit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line) { rb_vm_lock_leave(recursive_lock_level, file, line); } bool rb_zjit_mark_writable(void *mem_block, uint32_t mem_size) { return mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE) == 0; } void rb_zjit_mark_executable(void *mem_block, uint32_t mem_size) { // Do not call mprotect when mem_size is zero. Some platforms may return // an error for it. https://github.com/Shopify/ruby/issues/450 if (mem_size == 0) { return; } if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) { rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s", mem_block, (unsigned long)mem_size, strerror(errno)); } } // Free the specified memory block. bool rb_zjit_mark_unused(void *mem_block, uint32_t mem_size) { // On Linux, you need to use madvise MADV_DONTNEED to free memory. // We might not need to call this on macOS, but it's not really documented. // We generally prefer to do the same thing on both to ease testing too. madvise(mem_block, mem_size, MADV_DONTNEED); // On macOS, mprotect PROT_NONE seems to reduce RSS. // We also call this on Linux to avoid executing unused pages. return mprotect(mem_block, mem_size, PROT_NONE) == 0; } // Invalidate icache for arm64. // `start` is inclusive and `end` is exclusive. void rb_zjit_icache_invalidate(void *start, void *end) { // Clear/invalidate the instruction cache. Compiles to nothing on x86_64 // but required on ARM before running freshly written code. // On Darwin it's the same as calling sys_icache_invalidate(). #ifdef __GNUC__ __builtin___clear_cache(start, end); #elif defined(__aarch64__) #error No instruction cache clear available with this compiler on Aarch64! #endif } unsigned int rb_vm_ci_argc(const struct rb_callinfo *ci) { return vm_ci_argc(ci); } ID rb_vm_ci_mid(const struct rb_callinfo *ci) { return vm_ci_mid(ci); } unsigned int rb_vm_ci_flag(const struct rb_callinfo *ci) { return vm_ci_flag(ci); } const struct rb_callinfo_kwarg * rb_vm_ci_kwarg(const struct rb_callinfo *ci) { return vm_ci_kwarg(ci); } rb_method_visibility_t rb_METHOD_ENTRY_VISI(const rb_callable_method_entry_t *me) { return METHOD_ENTRY_VISI(me); } VALUE rb_yarv_class_of(VALUE obj) { return rb_class_of(obj); } // Acquire the VM lock and then signal all other Ruby threads (ractors) to // contend for the VM lock, putting them to sleep. ZJIT uses this to evict // threads running inside generated code so among other things, it can // safely change memory protection of regions housing generated code. void rb_zjit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line) { rb_vm_lock_enter(recursive_lock_level, file, line); rb_vm_barrier(); } VALUE rb_RCLASS_ORIGIN(VALUE c) { return RCLASS_ORIGIN(c); } // Convert a given ISEQ's instructions to zjit_* instructions void rb_zjit_profile_enable(const rb_iseq_t *iseq) { // This table encodes an opcode into the instruction's address const void *const *insn_table = rb_vm_get_insns_address_table(); unsigned int insn_idx = 0; while (insn_idx < iseq->body->iseq_size) { int insn = rb_vm_insn_decode(iseq->body->iseq_encoded[insn_idx]); int zjit_insn = vm_bare_insn_to_zjit_insn(insn); if (insn != zjit_insn) { iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[zjit_insn]; } insn_idx += insn_len(insn); } } // Convert a given ISEQ's ZJIT instructions to bare instructions void rb_zjit_profile_disable(const rb_iseq_t *iseq) { // This table encodes an opcode into the instruction's address const void *const *insn_table = rb_vm_get_insns_address_table(); unsigned int insn_idx = 0; while (insn_idx < iseq->body->iseq_size) { int insn = rb_vm_insn_decode(iseq->body->iseq_encoded[insn_idx]); int bare_insn = vm_zjit_insn_to_bare_insn(insn); if (insn != bare_insn) { iseq->body->iseq_encoded[insn_idx] = (VALUE)insn_table[bare_insn]; } insn_idx += insn_len(insn); } } // Get profiling information for ISEQ void * rb_iseq_get_zjit_payload(const rb_iseq_t *iseq) { RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq)); if (iseq->body) { return iseq->body->zjit_payload; } else { // Body is NULL when constructing the iseq. return NULL; } } // Set profiling information for ISEQ void rb_iseq_set_zjit_payload(const rb_iseq_t *iseq, void *payload) { RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq)); RUBY_ASSERT_ALWAYS(iseq->body); RUBY_ASSERT_ALWAYS(NULL == iseq->body->zjit_payload); iseq->body->zjit_payload = payload; } // Primitives used by zjit.rb VALUE rb_zjit_assert_compiles(rb_execution_context_t *ec, VALUE self); void rb_zjit_print_exception(void) { VALUE exception = rb_errinfo(); rb_set_errinfo(Qnil); assert(RTEST(exception)); rb_warn("Ruby error: %"PRIsVALUE"", rb_funcall(exception, rb_intern("full_message"), 0)); } // Preprocessed zjit.rb generated during build #include "zjit.rbinc"