-
Notifications
You must be signed in to change notification settings - Fork 28.5k
/
Copy pathgaussian_mixture_example.py
49 lines (41 loc) · 1.8 KB
/
gaussian_mixture_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# $example on$
from numpy import array
# $example off$
from pyspark import SparkContext
# $example on$
from pyspark.mllib.clustering import GaussianMixture, GaussianMixtureModel
# $example off$
if __name__ == "__main__":
sc = SparkContext(appName="GaussianMixtureExample") # SparkContext
# $example on$
# Load and parse the data
data = sc.textFile("data/mllib/gmm_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.strip().split(' ')]))
# Build the model (cluster the data)
gmm = GaussianMixture.train(parsedData, 2)
# Save and load model
gmm.save(sc, "target/org/apache/spark/PythonGaussianMixtureExample/GaussianMixtureModel")
sameModel = GaussianMixtureModel\
.load(sc, "target/org/apache/spark/PythonGaussianMixtureExample/GaussianMixtureModel")
# output parameters of model
for i in range(2):
print("weight = ", gmm.weights[i], "mu = ", gmm.gaussians[i].mu,
"sigma = ", gmm.gaussians[i].sigma.toArray())
# $example off$
sc.stop()