-
Notifications
You must be signed in to change notification settings - Fork 28.5k
/
Copy pathnaive_bayes_example.py
63 lines (49 loc) · 2.19 KB
/
naive_bayes_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
NaiveBayes Example.
Usage:
`spark-submit --master local[4] examples/src/main/python/mllib/naive_bayes_example.py`
"""
import shutil
from pyspark import SparkContext
# $example on$
from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel
from pyspark.mllib.util import MLUtils
# $example off$
if __name__ == "__main__":
sc = SparkContext(appName="PythonNaiveBayesExample")
# $example on$
# Load and parse the data file.
data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
# Split data approximately into training (60%) and test (40%)
training, test = data.randomSplit([0.6, 0.4])
# Train a naive Bayes model.
model = NaiveBayes.train(training, 1.0)
# Make prediction and test accuracy.
predictionAndLabel = test.map(lambda p: (model.predict(p.features), p.label))
accuracy = 1.0 * predictionAndLabel.filter(lambda pl: pl[0] == pl[1]).count() / test.count()
print('model accuracy {}'.format(accuracy))
# Save and load model
output_dir = 'target/tmp/myNaiveBayesModel'
shutil.rmtree(output_dir, ignore_errors=True)
model.save(sc, output_dir)
sameModel = NaiveBayesModel.load(sc, output_dir)
predictionAndLabel = test.map(lambda p: (sameModel.predict(p.features), p.label))
accuracy = 1.0 * predictionAndLabel.filter(lambda pl: pl[0] == pl[1]).count() / test.count()
print('sameModel accuracy {}'.format(accuracy))
# $example off$