-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathevaluation.py
197 lines (166 loc) · 6.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import logging
import sys
import os
import pandas as pd
from dotenv import load_dotenv
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.core.evaluation import (
DatasetGenerator,
RelevancyEvaluator,
FaithfulnessEvaluator,
EvaluationResult,
)
from llama_index.llms.openai import OpenAI
from tabulate import tabulate
import textwrap
import argparse
import traceback
from httpx import ReadTimeout
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
parser = argparse.ArgumentParser(
description="Process documents and questions for evaluation."
)
parser.add_argument(
"--num_documents",
type=int,
default=None,
help="Number of documents to process (default: all)",
)
parser.add_argument(
"--skip_documents",
type=int,
default=0,
help="Number of documents to skip at the beginning (default: 0)",
)
parser.add_argument(
"--num_questions",
type=int,
default=None,
help="Number of questions to process (default: all)",
)
parser.add_argument(
"--skip_questions",
type=int,
default=0,
help="Number of questions to skip at the beginning (default: 0)",
)
parser.add_argument(
"--process_last_questions",
action="store_true",
help="Process last N questions instead of first N",
)
args = parser.parse_args()
load_dotenv(".env")
reader = SimpleDirectoryReader("/tmp/elastic/production-readiness-review")
documents = reader.load_data()
print(f"First document: {documents[0].text}")
print(f"Second document: {documents[1].text}")
print(f"Thrid document: {documents[2].text}")
if args.skip_documents > 0:
documents = documents[args.skip_documents :]
if args.num_documents is not None:
documents = documents[: args.num_documents]
print(f"Number of documents loaded: {len(documents)}")
llm = OpenAI(model="gpt-4o", request_timeout=120)
data_generator = DatasetGenerator.from_documents(documents, llm=llm)
try:
eval_questions = data_generator.generate_questions_from_nodes()
if isinstance(eval_questions, str):
eval_questions_list = eval_questions.strip().split("\n")
else:
eval_questions_list = eval_questions
eval_questions_list = [q for q in eval_questions_list if q.strip()]
if args.skip_questions > 0:
eval_questions_list = eval_questions_list[args.skip_questions :]
if args.num_questions is not None:
if args.process_last_questions:
eval_questions_list = eval_questions_list[-args.num_questions :]
else:
eval_questions_list = eval_questions_list[: args.num_questions]
print("\All available questions generated:")
for idx, q in enumerate(eval_questions):
print(f"{idx}. {q}")
print("\nGenerated questions:")
for idx, q in enumerate(eval_questions_list, start=1):
print(f"{idx}. {q}")
except ReadTimeout as e:
print(
"Request to Ollama timed out during question generation. Please check the server or increase the timeout duration."
)
traceback.print_exc()
sys.exit(1)
except Exception as e:
print(f"An error occurred while generating questions: {e}")
traceback.print_exc()
sys.exit(1)
print(f"\nTotal number of questions generated: {len(eval_questions_list)}")
evaluator_relevancy = RelevancyEvaluator(llm=llm)
evaluator_faith = FaithfulnessEvaluator(llm=llm)
vector_index = VectorStoreIndex.from_documents(documents)
def display_eval_df(
query: str,
response: Response,
eval_result_relevancy: EvaluationResult,
eval_result_faith: EvaluationResult,
) -> None:
relevancy_feedback = getattr(eval_result_relevancy, "feedback", "")
relevancy_passing = getattr(eval_result_relevancy, "passing", False)
relevancy_passing_str = "Pass" if relevancy_passing else "Fail"
relevancy_score = 1.0 if relevancy_passing else 0.0
faithfulness_feedback = getattr(eval_result_faith, "feedback", "")
faithfulness_passing_bool = getattr(eval_result_faith, "passing", False)
faithfulness_passing = "Pass" if faithfulness_passing_bool else "Fail"
def wrap_text(text, width=50):
if text is None:
return ""
text = str(text)
text = text.replace("\r", "")
lines = text.split("\n")
wrapped_lines = []
for line in lines:
wrapped_lines.extend(textwrap.wrap(line, width=width))
wrapped_lines.append("")
return "\n".join(wrapped_lines)
if response.source_nodes:
source_content = wrap_text(response.source_nodes[0].node.get_content())
else:
source_content = ""
eval_data = {
"Query": wrap_text(query),
"Response": wrap_text(str(response)),
"Source": source_content,
"Relevancy Response": relevancy_passing_str,
"Relevancy Feedback": wrap_text(relevancy_feedback),
"Relevancy Score": wrap_text(str(relevancy_score)),
"Faith Response": faithfulness_passing,
"Faith Feedback": wrap_text(faithfulness_feedback),
}
eval_df = pd.DataFrame([eval_data])
print("\nEvaluation Result:")
print(
tabulate(
eval_df, headers="keys", tablefmt="grid", showindex=False, stralign="left"
)
)
query_engine = vector_index.as_query_engine(llm=llm)
total_questions = len(eval_questions_list)
for idx, question in enumerate(eval_questions_list, start=1):
try:
response_vector = query_engine.query(question)
eval_result_relevancy = evaluator_relevancy.evaluate_response(
query=question, response=response_vector
)
eval_result_faith = evaluator_faith.evaluate_response(response=response_vector)
print(f"\nProcessing Question {idx} of {total_questions}:")
display_eval_df(
question, response_vector, eval_result_relevancy, eval_result_faith
)
except ReadTimeout as e:
print(f"Request to OpenAI timed out while processing question {idx}.")
traceback.print_exc()
continue
except Exception as e:
print(f"An error occurred while processing question {idx}: {e}")
traceback.print_exc()
continue