-
Notifications
You must be signed in to change notification settings - Fork 454
/
Copy pathembedding.py
312 lines (267 loc) · 11.8 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import itertools
from typing import Any, Iterable, overload, TypeVar, Union, Mapping
import google.ai.generativelanguage as glm
from google.generativeai import protos
from google.generativeai.client import get_default_generative_client
from google.generativeai.client import get_default_generative_async_client
from google.generativeai.types import helper_types
from google.generativeai.types import model_types
from google.generativeai.types import text_types
from google.generativeai.types import content_types
DEFAULT_EMB_MODEL = "models/embedding-001"
EMBEDDING_MAX_BATCH_SIZE = 100
EmbeddingTaskType = protos.TaskType
EmbeddingTaskTypeOptions = Union[int, str, EmbeddingTaskType]
_EMBEDDING_TASK_TYPE: dict[EmbeddingTaskTypeOptions, EmbeddingTaskType] = {
EmbeddingTaskType.TASK_TYPE_UNSPECIFIED: EmbeddingTaskType.TASK_TYPE_UNSPECIFIED,
0: EmbeddingTaskType.TASK_TYPE_UNSPECIFIED,
"task_type_unspecified": EmbeddingTaskType.TASK_TYPE_UNSPECIFIED,
"unspecified": EmbeddingTaskType.TASK_TYPE_UNSPECIFIED,
EmbeddingTaskType.RETRIEVAL_QUERY: EmbeddingTaskType.RETRIEVAL_QUERY,
1: EmbeddingTaskType.RETRIEVAL_QUERY,
"retrieval_query": EmbeddingTaskType.RETRIEVAL_QUERY,
"query": EmbeddingTaskType.RETRIEVAL_QUERY,
EmbeddingTaskType.RETRIEVAL_DOCUMENT: EmbeddingTaskType.RETRIEVAL_DOCUMENT,
2: EmbeddingTaskType.RETRIEVAL_DOCUMENT,
"retrieval_document": EmbeddingTaskType.RETRIEVAL_DOCUMENT,
"document": EmbeddingTaskType.RETRIEVAL_DOCUMENT,
EmbeddingTaskType.SEMANTIC_SIMILARITY: EmbeddingTaskType.SEMANTIC_SIMILARITY,
3: EmbeddingTaskType.SEMANTIC_SIMILARITY,
"semantic_similarity": EmbeddingTaskType.SEMANTIC_SIMILARITY,
"similarity": EmbeddingTaskType.SEMANTIC_SIMILARITY,
EmbeddingTaskType.CLASSIFICATION: EmbeddingTaskType.CLASSIFICATION,
4: EmbeddingTaskType.CLASSIFICATION,
"classification": EmbeddingTaskType.CLASSIFICATION,
EmbeddingTaskType.CLUSTERING: EmbeddingTaskType.CLUSTERING,
5: EmbeddingTaskType.CLUSTERING,
"clustering": EmbeddingTaskType.CLUSTERING,
6: EmbeddingTaskType.QUESTION_ANSWERING,
"question_answering": EmbeddingTaskType.QUESTION_ANSWERING,
"qa": EmbeddingTaskType.QUESTION_ANSWERING,
EmbeddingTaskType.QUESTION_ANSWERING: EmbeddingTaskType.QUESTION_ANSWERING,
7: EmbeddingTaskType.FACT_VERIFICATION,
"fact_verification": EmbeddingTaskType.FACT_VERIFICATION,
"verification": EmbeddingTaskType.FACT_VERIFICATION,
EmbeddingTaskType.FACT_VERIFICATION: EmbeddingTaskType.FACT_VERIFICATION,
}
def to_task_type(x: EmbeddingTaskTypeOptions) -> EmbeddingTaskType:
if isinstance(x, str):
x = x.lower()
return _EMBEDDING_TASK_TYPE[x]
try:
# python 3.12+
_batched = itertools.batched # type: ignore
except AttributeError:
T = TypeVar("T")
def _batched(iterable: Iterable[T], n: int) -> Iterable[list[T]]:
if n < 1:
raise ValueError(
f"Invalid input: The batch size 'n' must be a positive integer. You entered: {n}. Please enter a number greater than 0."
)
batch = []
for item in iterable:
batch.append(item)
if len(batch) == n:
yield batch
batch = []
if batch:
yield batch
@overload
def embed_content(
model: model_types.BaseModelNameOptions,
content: content_types.ContentType,
task_type: EmbeddingTaskTypeOptions | None = None,
title: str | None = None,
output_dimensionality: int | None = None,
client: glm.GenerativeServiceClient | None = None,
request_options: helper_types.RequestOptionsType | None = None,
) -> text_types.EmbeddingDict: ...
@overload
def embed_content(
model: model_types.BaseModelNameOptions,
content: Iterable[content_types.ContentType],
task_type: EmbeddingTaskTypeOptions | None = None,
title: str | None = None,
output_dimensionality: int | None = None,
client: glm.GenerativeServiceClient | None = None,
request_options: helper_types.RequestOptionsType | None = None,
) -> text_types.BatchEmbeddingDict: ...
def embed_content(
model: model_types.BaseModelNameOptions,
content: content_types.ContentType | Iterable[content_types.ContentType],
task_type: EmbeddingTaskTypeOptions | None = None,
title: str | None = None,
output_dimensionality: int | None = None,
client: glm.GenerativeServiceClient = None,
request_options: helper_types.RequestOptionsType | None = None,
) -> text_types.EmbeddingDict | text_types.BatchEmbeddingDict:
"""Calls the API to create embeddings for content passed in.
Args:
model:
Which [model](https://ai.google.dev/models/gemini#embedding) to
call, as a string or a `types.Model`.
content:
Content to embed.
task_type:
Optional task type for which the embeddings will be used. Can only
be set for `models/embedding-001`.
title:
An optional title for the text. Only applicable when task_type is
`RETRIEVAL_DOCUMENT`.
output_dimensionality:
Optional reduced dimensionality for the output embeddings. If set,
excessive values from the output embeddings will be truncated from
the end.
request_options:
Options for the request.
Return:
Dictionary containing the embedding (list of float values) for the
input content.
"""
model = model_types.make_model_name(model)
if request_options is None:
request_options = {}
if client is None:
client = get_default_generative_client()
if title and to_task_type(task_type) is not EmbeddingTaskType.RETRIEVAL_DOCUMENT:
raise ValueError(
f"Invalid task type: When a title is specified, the task must be of a 'retrieval document' type. Received task type: {task_type} and title: {title}."
)
if output_dimensionality and output_dimensionality < 0:
raise ValueError(
f"Invalid value: `output_dimensionality` must be a non-negative integer. Received: {output_dimensionality}."
)
if task_type:
task_type = to_task_type(task_type)
if isinstance(content, Iterable) and not isinstance(content, (str, Mapping)):
result = {"embedding": []}
requests = (
protos.EmbedContentRequest(
model=model,
content=content_types.to_content(c),
task_type=task_type,
title=title,
output_dimensionality=output_dimensionality,
)
for c in content
)
for batch in _batched(requests, EMBEDDING_MAX_BATCH_SIZE):
embedding_request = protos.BatchEmbedContentsRequest(model=model, requests=batch)
embedding_response = client.batch_embed_contents(
embedding_request,
**request_options,
)
embedding_dict = type(embedding_response).to_dict(embedding_response)
result["embedding"].extend(e["values"] for e in embedding_dict["embeddings"])
return result
else:
embedding_request = protos.EmbedContentRequest(
model=model,
content=content_types.to_content(content),
task_type=task_type,
title=title,
output_dimensionality=output_dimensionality,
)
embedding_response = client.embed_content(
embedding_request,
**request_options,
)
embedding_dict = type(embedding_response).to_dict(embedding_response)
embedding_dict["embedding"] = embedding_dict["embedding"]["values"]
return embedding_dict
@overload
async def embed_content_async(
model: model_types.BaseModelNameOptions,
content: content_types.ContentType,
task_type: EmbeddingTaskTypeOptions | None = None,
title: str | None = None,
output_dimensionality: int | None = None,
client: glm.GenerativeServiceAsyncClient | None = None,
request_options: helper_types.RequestOptionsType | None = None,
) -> text_types.EmbeddingDict: ...
@overload
async def embed_content_async(
model: model_types.BaseModelNameOptions,
content: Iterable[content_types.ContentType],
task_type: EmbeddingTaskTypeOptions | None = None,
title: str | None = None,
output_dimensionality: int | None = None,
client: glm.GenerativeServiceAsyncClient | None = None,
request_options: helper_types.RequestOptionsType | None = None,
) -> text_types.BatchEmbeddingDict: ...
async def embed_content_async(
model: model_types.BaseModelNameOptions,
content: content_types.ContentType | Iterable[content_types.ContentType],
task_type: EmbeddingTaskTypeOptions | None = None,
title: str | None = None,
output_dimensionality: int | None = None,
client: glm.GenerativeServiceAsyncClient = None,
request_options: helper_types.RequestOptionsType | None = None,
) -> text_types.EmbeddingDict | text_types.BatchEmbeddingDict:
"""Calls the API to create async embeddings for content passed in."""
model = model_types.make_model_name(model)
if request_options is None:
request_options = {}
if client is None:
client = get_default_generative_async_client()
if title and to_task_type(task_type) is not EmbeddingTaskType.RETRIEVAL_DOCUMENT:
raise ValueError(
f"Invalid task type: When a title is specified, the task must be of a 'retrieval document' type. Received task type: {task_type} and title: {title}."
)
if output_dimensionality and output_dimensionality < 0:
raise ValueError(
f"Invalid value: `output_dimensionality` must be a non-negative integer. Received: {output_dimensionality}."
)
if task_type:
task_type = to_task_type(task_type)
if isinstance(content, Iterable) and not isinstance(content, (str, Mapping)):
result = {"embedding": []}
requests = (
protos.EmbedContentRequest(
model=model,
content=content_types.to_content(c),
task_type=task_type,
title=title,
output_dimensionality=output_dimensionality,
)
for c in content
)
for batch in _batched(requests, EMBEDDING_MAX_BATCH_SIZE):
embedding_request = protos.BatchEmbedContentsRequest(model=model, requests=batch)
embedding_response = await client.batch_embed_contents(
embedding_request,
**request_options,
)
embedding_dict = type(embedding_response).to_dict(embedding_response)
result["embedding"].extend(e["values"] for e in embedding_dict["embeddings"])
return result
else:
embedding_request = protos.EmbedContentRequest(
model=model,
content=content_types.to_content(content),
task_type=task_type,
title=title,
output_dimensionality=output_dimensionality,
)
embedding_response = await client.embed_content(
embedding_request,
**request_options,
)
embedding_dict = type(embedding_response).to_dict(embedding_response)
embedding_dict["embedding"] = embedding_dict["embedding"]["values"]
return embedding_dict