-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathconvert_omnigen_to_diffusers.py
203 lines (184 loc) · 7.32 KB
/
convert_omnigen_to_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from transformers import AutoTokenizer
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, OmniGenPipeline, OmniGenTransformer2DModel
def main(args):
# checkpoint from https://huggingface.co/Shitao/OmniGen-v1
if not os.path.exists(args.origin_ckpt_path):
print("Model not found, downloading...")
cache_folder = os.getenv("HF_HUB_CACHE")
args.origin_ckpt_path = snapshot_download(
repo_id=args.origin_ckpt_path,
cache_dir=cache_folder,
ignore_patterns=["flax_model.msgpack", "rust_model.ot", "tf_model.h5", "model.pt"],
)
print(f"Downloaded model to {args.origin_ckpt_path}")
ckpt = os.path.join(args.origin_ckpt_path, "model.safetensors")
ckpt = load_file(ckpt, device="cpu")
mapping_dict = {
"pos_embed": "patch_embedding.pos_embed",
"x_embedder.proj.weight": "patch_embedding.output_image_proj.weight",
"x_embedder.proj.bias": "patch_embedding.output_image_proj.bias",
"input_x_embedder.proj.weight": "patch_embedding.input_image_proj.weight",
"input_x_embedder.proj.bias": "patch_embedding.input_image_proj.bias",
"final_layer.adaLN_modulation.1.weight": "norm_out.linear.weight",
"final_layer.adaLN_modulation.1.bias": "norm_out.linear.bias",
"final_layer.linear.weight": "proj_out.weight",
"final_layer.linear.bias": "proj_out.bias",
"time_token.mlp.0.weight": "time_token.linear_1.weight",
"time_token.mlp.0.bias": "time_token.linear_1.bias",
"time_token.mlp.2.weight": "time_token.linear_2.weight",
"time_token.mlp.2.bias": "time_token.linear_2.bias",
"t_embedder.mlp.0.weight": "t_embedder.linear_1.weight",
"t_embedder.mlp.0.bias": "t_embedder.linear_1.bias",
"t_embedder.mlp.2.weight": "t_embedder.linear_2.weight",
"t_embedder.mlp.2.bias": "t_embedder.linear_2.bias",
"llm.embed_tokens.weight": "embed_tokens.weight",
}
converted_state_dict = {}
for k, v in ckpt.items():
if k in mapping_dict:
converted_state_dict[mapping_dict[k]] = v
elif "qkv" in k:
to_q, to_k, to_v = v.chunk(3)
converted_state_dict[f"layers.{k.split('.')[2]}.self_attn.to_q.weight"] = to_q
converted_state_dict[f"layers.{k.split('.')[2]}.self_attn.to_k.weight"] = to_k
converted_state_dict[f"layers.{k.split('.')[2]}.self_attn.to_v.weight"] = to_v
elif "o_proj" in k:
converted_state_dict[f"layers.{k.split('.')[2]}.self_attn.to_out.0.weight"] = v
else:
converted_state_dict[k[4:]] = v
transformer = OmniGenTransformer2DModel(
rope_scaling={
"long_factor": [
1.0299999713897705,
1.0499999523162842,
1.0499999523162842,
1.0799999237060547,
1.2299998998641968,
1.2299998998641968,
1.2999999523162842,
1.4499999284744263,
1.5999999046325684,
1.6499998569488525,
1.8999998569488525,
2.859999895095825,
3.68999981880188,
5.419999599456787,
5.489999771118164,
5.489999771118164,
9.09000015258789,
11.579999923706055,
15.65999984741211,
15.769999504089355,
15.789999961853027,
18.360000610351562,
21.989999771118164,
23.079999923706055,
30.009998321533203,
32.35000228881836,
32.590003967285156,
35.56000518798828,
39.95000457763672,
53.840003967285156,
56.20000457763672,
57.95000457763672,
59.29000473022461,
59.77000427246094,
59.920005798339844,
61.190006256103516,
61.96000671386719,
62.50000762939453,
63.3700065612793,
63.48000717163086,
63.48000717163086,
63.66000747680664,
63.850006103515625,
64.08000946044922,
64.760009765625,
64.80001068115234,
64.81001281738281,
64.81001281738281,
],
"short_factor": [
1.05,
1.05,
1.05,
1.1,
1.1,
1.1,
1.2500000000000002,
1.2500000000000002,
1.4000000000000004,
1.4500000000000004,
1.5500000000000005,
1.8500000000000008,
1.9000000000000008,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.000000000000001,
2.1000000000000005,
2.1000000000000005,
2.2,
2.3499999999999996,
2.3499999999999996,
2.3499999999999996,
2.3499999999999996,
2.3999999999999995,
2.3999999999999995,
2.6499999999999986,
2.6999999999999984,
2.8999999999999977,
2.9499999999999975,
3.049999999999997,
3.049999999999997,
3.049999999999997,
],
"type": "su",
},
patch_size=2,
in_channels=4,
pos_embed_max_size=192,
)
transformer.load_state_dict(converted_state_dict, strict=True)
transformer.to(torch.bfloat16)
num_model_params = sum(p.numel() for p in transformer.parameters())
print(f"Total number of transformer parameters: {num_model_params}")
scheduler = FlowMatchEulerDiscreteScheduler(invert_sigmas=True, num_train_timesteps=1)
vae = AutoencoderKL.from_pretrained(os.path.join(args.origin_ckpt_path, "vae"), torch_dtype=torch.float32)
tokenizer = AutoTokenizer.from_pretrained(args.origin_ckpt_path)
pipeline = OmniGenPipeline(tokenizer=tokenizer, transformer=transformer, vae=vae, scheduler=scheduler)
pipeline.save_pretrained(args.dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--origin_ckpt_path",
default="Shitao/OmniGen-v1",
type=str,
required=False,
help="Path to the checkpoint to convert.",
)
parser.add_argument(
"--dump_path", default="OmniGen-v1-diffusers", type=str, required=False, help="Path to the output pipeline."
)
args = parser.parse_args()
main(args)