-
Notifications
You must be signed in to change notification settings - Fork 19.6k
/
Copy pathzero_padding3d.py
118 lines (107 loc) · 4.94 KB
/
zero_padding3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from keras.src import backend
from keras.src import ops
from keras.src.api_export import keras_export
from keras.src.layers.input_spec import InputSpec
from keras.src.layers.layer import Layer
from keras.src.utils import argument_validation
@keras_export("keras.layers.ZeroPadding3D")
class ZeroPadding3D(Layer):
"""Zero-padding layer for 3D data (spatial or spatio-temporal).
Example:
>>> input_shape = (1, 1, 2, 2, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = keras.layers.ZeroPadding3D(padding=2)(x)
>>> y.shape
(1, 5, 6, 6, 3)
Args:
padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
- If int: the same symmetric padding is applied to depth, height,
and width.
- If tuple of 3 ints: interpreted as three different symmetric
padding values for depth, height, and width:
`(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)`.
- If tuple of 3 tuples of 2 ints: interpreted as
`((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
right_dim2_pad), (left_dim3_pad, right_dim3_pad))`.
data_format: A string, one of `"channels_last"` (default) or
`"channels_first"`. The ordering of the dimensions in the inputs.
`"channels_last"` corresponds to inputs with shape
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `"channels_first"` corresponds to inputs with shape
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
When unspecified, uses `image_data_format` value found in your Keras
config file at `~/.keras/keras.json` (if exists). Defaults to
`"channels_last"`.
Input shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, first_axis_to_pad, second_axis_to_pad,
third_axis_to_pad, depth)`
- If `data_format` is `"channels_first"`:
`(batch_size, depth, first_axis_to_pad, second_axis_to_pad,
third_axis_to_pad)`
Output shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, first_padded_axis, second_padded_axis,
third_axis_to_pad, depth)`
- If `data_format` is `"channels_first"`:
`(batch_size, depth, first_padded_axis, second_padded_axis,
third_axis_to_pad)`
"""
def __init__(
self, padding=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
):
super().__init__(**kwargs)
self.data_format = backend.standardize_data_format(data_format)
if isinstance(padding, int):
self.padding = (
(padding, padding),
(padding, padding),
(padding, padding),
)
elif hasattr(padding, "__len__"):
if len(padding) != 3:
raise ValueError(
f"`padding` should have 3 elements. Received: {padding}."
)
dim1_padding = argument_validation.standardize_tuple(
padding[0], 2, "1st entry of padding", allow_zero=True
)
dim2_padding = argument_validation.standardize_tuple(
padding[1], 2, "2nd entry of padding", allow_zero=True
)
dim3_padding = argument_validation.standardize_tuple(
padding[2], 2, "3rd entry of padding", allow_zero=True
)
self.padding = (dim1_padding, dim2_padding, dim3_padding)
else:
raise ValueError(
"`padding` should be either an int, a tuple of 3 ints "
"(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad), "
"or a tuple of 3 tuples of 2 ints "
"((left_dim1_pad, right_dim1_pad),"
" (left_dim2_pad, right_dim2_pad),"
" (left_dim3_pad, right_dim2_pad)). "
f"Received: padding={padding}."
)
self.input_spec = InputSpec(ndim=5)
def compute_output_shape(self, input_shape):
output_shape = list(input_shape)
spatial_dims_offset = 2 if self.data_format == "channels_first" else 1
for index in range(0, 3):
if output_shape[index + spatial_dims_offset] is not None:
output_shape[index + spatial_dims_offset] += (
self.padding[index][0] + self.padding[index][1]
)
return tuple(output_shape)
def call(self, inputs):
if self.data_format == "channels_first":
all_dims_padding = ((0, 0), (0, 0), *self.padding)
else:
all_dims_padding = ((0, 0), *self.padding, (0, 0))
return ops.pad(inputs, all_dims_padding)
def get_config(self):
config = {"padding": self.padding, "data_format": self.data_format}
base_config = super().get_config()
return {**base_config, **config}