-
Notifications
You must be signed in to change notification settings - Fork 6.2k
/
Copy pathupper_confidence_bound.py
44 lines (38 loc) · 1.37 KB
/
upper_confidence_bound.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from typing import Union
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import OldAPIStack, override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils.framework import (
TensorType,
try_import_tf,
)
tf1, tf, tfv = try_import_tf()
@OldAPIStack
class UpperConfidenceBound(Exploration):
@override(Exploration)
def get_exploration_action(
self,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True,
):
if self.framework == "torch":
return self._get_torch_exploration_action(action_distribution, explore)
elif self.framework == "tf2":
return self._get_tf_exploration_action(action_distribution, explore)
else:
raise NotImplementedError
def _get_torch_exploration_action(self, action_dist, explore):
if explore:
return action_dist.inputs.argmax(dim=-1), None
else:
scores = self.model.value_function()
return scores.argmax(dim=-1), None
def _get_tf_exploration_action(self, action_dist, explore):
action = tf.argmax(
tf.cond(
explore, lambda: action_dist.inputs, lambda: self.model.value_function()
),
axis=-1,
)
return action, None