-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathbase.py
435 lines (335 loc) · 13.2 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""Base class for sampling"""
# Authors: Guillaume Lemaitre <[email protected]>
# Christos Aridas
# License: MIT
from abc import ABCMeta, abstractmethod
import numpy as np
from sklearn.base import BaseEstimator, OneToOneFeatureMixin
from sklearn.preprocessing import label_binarize
from sklearn.utils._metadata_requests import METHODS
from sklearn.utils.multiclass import check_classification_targets
from .utils import check_sampling_strategy, check_target_type
from .utils._sklearn_compat import _fit_context, get_tags, validate_data
from .utils._validation import ArraysTransformer
if "fit_predict" not in METHODS:
METHODS.append("fit_predict")
if "fit_transform" not in METHODS:
METHODS.append("fit_transform")
METHODS.append("fit_resample")
try:
from sklearn.utils._metadata_requests import SIMPLE_METHODS
SIMPLE_METHODS.append("fit_resample")
except ImportError:
# in older versions of scikit-learn, only METHODS is used
pass
class SamplerMixin(metaclass=ABCMeta):
"""Mixin class for samplers with abstract method.
Warning: This class should not be used directly. Use the derive classes
instead.
"""
_estimator_type = "sampler"
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, **params):
"""Check inputs and statistics of the sampler.
You should use ``fit_resample`` in all cases.
Parameters
----------
X : {array-like, dataframe, sparse matrix} of shape \
(n_samples, n_features)
Data array.
y : array-like of shape (n_samples,)
Target array.
**params : dict
Extra parameters to use by the sampler.
Returns
-------
self : object
Return the instance itself.
"""
X, y, _ = self._check_X_y(X, y)
self.sampling_strategy_ = check_sampling_strategy(
self.sampling_strategy, y, self._sampling_type
)
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit_resample(self, X, y, **params):
"""Resample the dataset.
Parameters
----------
X : {array-like, dataframe, sparse matrix} of shape \
(n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like of shape (n_samples,)
Corresponding label for each sample in X.
**params : dict
Extra parameters to use by the sampler.
Returns
-------
X_resampled : {array-like, dataframe, sparse matrix} of shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : array-like of shape (n_samples_new,)
The corresponding label of `X_resampled`.
"""
check_classification_targets(y)
arrays_transformer = ArraysTransformer(X, y)
X, y, binarize_y = self._check_X_y(X, y)
self.sampling_strategy_ = check_sampling_strategy(
self.sampling_strategy, y, self._sampling_type
)
output = self._fit_resample(X, y, **params)
y_ = (
label_binarize(output[1], classes=np.unique(y)) if binarize_y else output[1]
)
X_, y_ = arrays_transformer.transform(output[0], y_)
return (X_, y_) if len(output) == 2 else (X_, y_, output[2])
@abstractmethod
def _fit_resample(self, X, y, **params):
"""Base method defined in each sampler to defined the sampling
strategy.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like of shape (n_samples,)
Corresponding label for each sample in X.
**params : dict
Extra parameters to use by the sampler.
Returns
-------
X_resampled : {ndarray, sparse matrix} of shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray of shape (n_samples_new,)
The corresponding label of `X_resampled`.
"""
pass
class BaseSampler(SamplerMixin, OneToOneFeatureMixin, BaseEstimator):
"""Base class for sampling algorithms.
Warning: This class should not be used directly. Use the derive classes
instead.
"""
def __init__(self, sampling_strategy="auto"):
self.sampling_strategy = sampling_strategy
def _check_X_y(self, X, y, accept_sparse=None):
if accept_sparse is None:
accept_sparse = ["csr", "csc"]
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
X, y = validate_data(self, X=X, y=y, reset=True, accept_sparse=accept_sparse)
return X, y, binarize_y
def fit(self, X, y, **params):
"""Check inputs and statistics of the sampler.
You should use ``fit_resample`` in all cases.
Parameters
----------
X : {array-like, dataframe, sparse matrix} of shape \
(n_samples, n_features)
Data array.
y : array-like of shape (n_samples,)
Target array.
Returns
-------
self : object
Return the instance itself.
"""
return super().fit(X, y, **params)
def fit_resample(self, X, y, **params):
"""Resample the dataset.
Parameters
----------
X : {array-like, dataframe, sparse matrix} of shape \
(n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like of shape (n_samples,)
Corresponding label for each sample in X.
Returns
-------
X_resampled : {array-like, dataframe, sparse matrix} of shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : array-like of shape (n_samples_new,)
The corresponding label of `X_resampled`.
"""
return super().fit_resample(X, y, **params)
def _more_tags(self):
return {"X_types": ["2darray", "sparse", "dataframe"]}
def __sklearn_tags__(self):
from .utils._sklearn_compat import TargetTags
from .utils._tags import InputTags, SamplerTags, Tags
tags = Tags(
estimator_type="sampler",
target_tags=TargetTags(required=True),
transformer_tags=None,
regressor_tags=None,
classifier_tags=None,
sampler_tags=SamplerTags(),
)
tags.input_tags = InputTags()
tags.input_tags.two_d_array = True
tags.input_tags.sparse = True
tags.input_tags.dataframe = True
return tags
def _identity(X, y):
return X, y
def is_sampler(estimator):
"""Return True if the given estimator is a sampler, False otherwise.
Parameters
----------
estimator : object
Estimator to test.
Returns
-------
is_sampler : bool
True if estimator is a sampler, otherwise False.
"""
if hasattr(estimator, "_estimator_type") and estimator._estimator_type == "sampler":
return True
tags = get_tags(estimator)
if hasattr(tags, "sampler_tags") and tags.sampler_tags is not None:
return True
return False
class FunctionSampler(BaseSampler):
"""Construct a sampler from calling an arbitrary callable.
Read more in the :ref:`User Guide <function_sampler>`.
Parameters
----------
func : callable, default=None
The callable to use for the transformation. This will be passed the
same arguments as transform, with args and kwargs forwarded. If func is
None, then func will be the identity function.
accept_sparse : bool, default=True
Whether sparse input are supported. By default, sparse inputs are
supported.
kw_args : dict, default=None
The keyword argument expected by ``func``.
validate : bool, default=True
Whether or not to bypass the validation of ``X`` and ``y``. Turning-off
validation allows to use the ``FunctionSampler`` with any type of
data.
.. versionadded:: 0.6
Attributes
----------
sampling_strategy_ : dict
Dictionary containing the information to sample the dataset. The keys
corresponds to the class labels from which to sample and the values
are the number of samples to sample.
n_features_in_ : int
Number of features in the input dataset.
.. versionadded:: 0.9
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during `fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 0.10
See Also
--------
sklearn.preprocessing.FunctionTransfomer : Stateless transformer.
Notes
-----
See
:ref:`sphx_glr_auto_examples_applications_plot_outlier_rejections.py`
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_classification
>>> from imblearn import FunctionSampler
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
We can create to select only the first ten samples for instance.
>>> def func(X, y):
... return X[:10], y[:10]
>>> sampler = FunctionSampler(func=func)
>>> X_res, y_res = sampler.fit_resample(X, y)
>>> np.all(X_res == X[:10])
True
>>> np.all(y_res == y[:10])
True
We can also create a specific function which take some arguments.
>>> from collections import Counter
>>> from imblearn.under_sampling import RandomUnderSampler
>>> def func(X, y, sampling_strategy, random_state):
... return RandomUnderSampler(
... sampling_strategy=sampling_strategy,
... random_state=random_state).fit_resample(X, y)
>>> sampler = FunctionSampler(func=func,
... kw_args={'sampling_strategy': 'auto',
... 'random_state': 0})
>>> X_res, y_res = sampler.fit_resample(X, y)
>>> print(f'Resampled dataset shape {sorted(Counter(y_res).items())}')
Resampled dataset shape [(0, 100), (1, 100)]
"""
_sampling_type = "bypass"
_parameter_constraints: dict = {
"func": [callable, None],
"accept_sparse": ["boolean"],
"kw_args": [dict, None],
"validate": ["boolean"],
}
def __init__(self, *, func=None, accept_sparse=True, kw_args=None, validate=True):
super().__init__()
self.func = func
self.accept_sparse = accept_sparse
self.kw_args = kw_args
self.validate = validate
def fit(self, X, y):
"""Check inputs and statistics of the sampler.
You should use ``fit_resample`` in all cases.
Parameters
----------
X : {array-like, dataframe, sparse matrix} of shape \
(n_samples, n_features)
Data array.
y : array-like of shape (n_samples,)
Target array.
Returns
-------
self : object
Return the instance itself.
"""
self._validate_params()
# we need to overwrite SamplerMixin.fit to bypass the validation
if self.validate:
check_classification_targets(y)
X, y, _ = self._check_X_y(X, y, accept_sparse=self.accept_sparse)
self.sampling_strategy_ = check_sampling_strategy(
self.sampling_strategy, y, self._sampling_type
)
return self
def fit_resample(self, X, y):
"""Resample the dataset.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like of shape (n_samples,)
Corresponding label for each sample in X.
Returns
-------
X_resampled : {array-like, sparse matrix} of shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : array-like of shape (n_samples_new,)
The corresponding label of `X_resampled`.
"""
self._validate_params()
arrays_transformer = ArraysTransformer(X, y)
if self.validate:
check_classification_targets(y)
X, y, binarize_y = self._check_X_y(X, y, accept_sparse=self.accept_sparse)
self.sampling_strategy_ = check_sampling_strategy(
self.sampling_strategy, y, self._sampling_type
)
output = self._fit_resample(X, y)
if self.validate:
y_ = (
label_binarize(output[1], classes=np.unique(y))
if binarize_y
else output[1]
)
X_, y_ = arrays_transformer.transform(output[0], y_)
return (X_, y_) if len(output) == 2 else (X_, y_, output[2])
return output
def _fit_resample(self, X, y):
func = _identity if self.func is None else self.func
output = func(X, y, **(self.kw_args if self.kw_args else {}))
return output