Skip to content

Commit a376150

Browse files
committed
Pushing the docs to dev/ for branch: main, commit c4c546355667b070edd5c892b206aa4a97af9a0b
1 parent ed63181 commit a376150

File tree

1,348 files changed

+7066
-7047
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,348 files changed

+7066
-7047
lines changed

dev/.buildinfo

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: dfa35fafdd8dd7a4a77d17a12c7daaa4
3+
config: 29c9b69abd7e3ef515aa5285b888f1e3
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

dev/_downloads/00ae629d652473137a3905a5e08ea815/plot_iris_dtc.py

+1
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,7 @@
1414
1515
We also show the tree structure of a model built on all of the features.
1616
"""
17+
1718
# %%
1819
# First load the copy of the Iris dataset shipped with scikit-learn:
1920
from sklearn.datasets import load_iris
Binary file not shown.

dev/_downloads/0b39f715b5e32f01df3d212b6d822b82/plot_calibration.py

+1
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,7 @@
2222
Brier score.
2323
2424
"""
25+
2526
# Authors:
2627
# Mathieu Blondel <[email protected]>
2728
# Alexandre Gramfort <[email protected]>

dev/_downloads/10754505339af88c10b8a48127535a4a/plot_quantile_regression.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@
163163
},
164164
"outputs": [],
165165
"source": [
166-
"from sklearn.linear_model import LinearRegression\nfrom sklearn.metrics import mean_absolute_error, mean_squared_error\n\nlinear_regression = LinearRegression()\nquantile_regression = QuantileRegressor(quantile=0.5, alpha=0, solver=solver)\n\ny_pred_lr = linear_regression.fit(X, y_pareto).predict(X)\ny_pred_qr = quantile_regression.fit(X, y_pareto).predict(X)\n\nprint(f\"\"\"Training error (in-sample performance)\n {linear_regression.__class__.__name__}:\n MAE = {mean_absolute_error(y_pareto, y_pred_lr):.3f}\n MSE = {mean_squared_error(y_pareto, y_pred_lr):.3f}\n {quantile_regression.__class__.__name__}:\n MAE = {mean_absolute_error(y_pareto, y_pred_qr):.3f}\n MSE = {mean_squared_error(y_pareto, y_pred_qr):.3f}\n \"\"\")"
166+
"from sklearn.linear_model import LinearRegression\nfrom sklearn.metrics import mean_absolute_error, mean_squared_error\n\nlinear_regression = LinearRegression()\nquantile_regression = QuantileRegressor(quantile=0.5, alpha=0, solver=solver)\n\ny_pred_lr = linear_regression.fit(X, y_pareto).predict(X)\ny_pred_qr = quantile_regression.fit(X, y_pareto).predict(X)\n\nprint(\n f\"\"\"Training error (in-sample performance)\n {linear_regression.__class__.__name__}:\n MAE = {mean_absolute_error(y_pareto, y_pred_lr):.3f}\n MSE = {mean_squared_error(y_pareto, y_pred_lr):.3f}\n {quantile_regression.__class__.__name__}:\n MAE = {mean_absolute_error(y_pareto, y_pred_qr):.3f}\n MSE = {mean_squared_error(y_pareto, y_pred_qr):.3f}\n \"\"\"\n)"
167167
]
168168
},
169169
{
@@ -181,7 +181,7 @@
181181
},
182182
"outputs": [],
183183
"source": [
184-
"from sklearn.model_selection import cross_validate\n\ncv_results_lr = cross_validate(\n linear_regression,\n X,\n y_pareto,\n cv=3,\n scoring=[\"neg_mean_absolute_error\", \"neg_mean_squared_error\"],\n)\ncv_results_qr = cross_validate(\n quantile_regression,\n X,\n y_pareto,\n cv=3,\n scoring=[\"neg_mean_absolute_error\", \"neg_mean_squared_error\"],\n)\nprint(f\"\"\"Test error (cross-validated performance)\n {linear_regression.__class__.__name__}:\n MAE = {-cv_results_lr[\"test_neg_mean_absolute_error\"].mean():.3f}\n MSE = {-cv_results_lr[\"test_neg_mean_squared_error\"].mean():.3f}\n {quantile_regression.__class__.__name__}:\n MAE = {-cv_results_qr[\"test_neg_mean_absolute_error\"].mean():.3f}\n MSE = {-cv_results_qr[\"test_neg_mean_squared_error\"].mean():.3f}\n \"\"\")"
184+
"from sklearn.model_selection import cross_validate\n\ncv_results_lr = cross_validate(\n linear_regression,\n X,\n y_pareto,\n cv=3,\n scoring=[\"neg_mean_absolute_error\", \"neg_mean_squared_error\"],\n)\ncv_results_qr = cross_validate(\n quantile_regression,\n X,\n y_pareto,\n cv=3,\n scoring=[\"neg_mean_absolute_error\", \"neg_mean_squared_error\"],\n)\nprint(\n f\"\"\"Test error (cross-validated performance)\n {linear_regression.__class__.__name__}:\n MAE = {-cv_results_lr[\"test_neg_mean_absolute_error\"].mean():.3f}\n MSE = {-cv_results_lr[\"test_neg_mean_squared_error\"].mean():.3f}\n {quantile_regression.__class__.__name__}:\n MAE = {-cv_results_qr[\"test_neg_mean_absolute_error\"].mean():.3f}\n MSE = {-cv_results_qr[\"test_neg_mean_squared_error\"].mean():.3f}\n \"\"\"\n)"
185185
]
186186
},
187187
{

dev/_downloads/1dcd684ce26b8c407ec2c2d2101c5c73/plot_kernel_ridge_regression.py

+1
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@
1717
datapoint.
1818
1919
"""
20+
2021
# %%
2122
# Authors: Jan Hendrik Metzen <[email protected]>
2223
# License: BSD 3 clause

dev/_downloads/29c38fef6831de20867ac61e068f2461/plot_covariance_estimation.py

-1
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,6 @@
1515
trade-off.
1616
"""
1717

18-
1918
# %%
2019
# Generate sample data
2120
# --------------------

dev/_downloads/2f930acda654766f8ba0fee08887bb41/plot_affinity_propagation.py

+1
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
Between Data Points", Science Feb. 2007
99
1010
"""
11+
1112
import numpy as np
1213

1314
from sklearn import metrics

dev/_downloads/35686e86ab04c9899b73acd07be52bc7/plot_metadata_routing.py

+1
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,7 @@
2020
2121
First a few imports and some random data for the rest of the script.
2222
"""
23+
2324
# %%
2425

2526
import warnings

dev/_downloads/3a10dcfbc1a4bf1349c7101a429aa47b/plot_feature_transformation.py

-1
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,6 @@
2020
2121
"""
2222

23-
2423
# Author: Tim Head <[email protected]>
2524
#
2625
# License: BSD 3 clause
Binary file not shown.

dev/_downloads/73962cec5f14b10630f1a505fe761ab7/plot_bisect_kmeans.py

+1
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@
1313
present for regular K-Means.
1414
1515
"""
16+
1617
import matplotlib.pyplot as plt
1718

1819
from sklearn.cluster import BisectingKMeans, KMeans

dev/_downloads/7f0a2318ad82288d649c688011f52618/plot_swissroll.py

+1
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
Then, we will explore how they both deal with the addition of a hole
99
in the data.
1010
"""
11+
1112
# %%
1213
# Swiss Roll
1314
# ---------------------------------------------------

dev/_downloads/7f9c06d88a8d544a3815452dacaa0548/plot_semi_supervised_newsgroups.py

-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@
1111
1212
"""
1313

14-
1514
import numpy as np
1615

1716
from sklearn.datasets import fetch_20newsgroups

dev/_downloads/8a712694e4d011e8f35bfcb1b1b5fc82/plot_quantile_regression.py

+8-4
Original file line numberDiff line numberDiff line change
@@ -261,14 +261,16 @@
261261
y_pred_lr = linear_regression.fit(X, y_pareto).predict(X)
262262
y_pred_qr = quantile_regression.fit(X, y_pareto).predict(X)
263263

264-
print(f"""Training error (in-sample performance)
264+
print(
265+
f"""Training error (in-sample performance)
265266
{linear_regression.__class__.__name__}:
266267
MAE = {mean_absolute_error(y_pareto, y_pred_lr):.3f}
267268
MSE = {mean_squared_error(y_pareto, y_pred_lr):.3f}
268269
{quantile_regression.__class__.__name__}:
269270
MAE = {mean_absolute_error(y_pareto, y_pred_qr):.3f}
270271
MSE = {mean_squared_error(y_pareto, y_pred_qr):.3f}
271-
""")
272+
"""
273+
)
272274

273275
# %%
274276
# On the training set, we see that MAE is lower for
@@ -298,14 +300,16 @@
298300
cv=3,
299301
scoring=["neg_mean_absolute_error", "neg_mean_squared_error"],
300302
)
301-
print(f"""Test error (cross-validated performance)
303+
print(
304+
f"""Test error (cross-validated performance)
302305
{linear_regression.__class__.__name__}:
303306
MAE = {-cv_results_lr["test_neg_mean_absolute_error"].mean():.3f}
304307
MSE = {-cv_results_lr["test_neg_mean_squared_error"].mean():.3f}
305308
{quantile_regression.__class__.__name__}:
306309
MAE = {-cv_results_qr["test_neg_mean_absolute_error"].mean():.3f}
307310
MSE = {-cv_results_qr["test_neg_mean_squared_error"].mean():.3f}
308-
""")
311+
"""
312+
)
309313

310314
# %%
311315
# We reach similar conclusions on the out-of-sample evaluation.

dev/_downloads/9e22207e9bd6485b95f32783b59d9a80/plot_monotonic_constraints.py

+1
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,7 @@
1919
<https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html>`_.
2020
2121
"""
22+
2223
# %%
2324
import matplotlib.pyplot as plt
2425
import numpy as np

dev/_downloads/b3a994b2ad66fe78bcedaf151ab78b07/plot_face_recognition.py

+1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@
1111
.. _LFW: http://vis-www.cs.umass.edu/lfw/
1212
1313
"""
14+
1415
# %%
1516
from time import time
1617

dev/_downloads/be911e971b87fe80b6899069dbcfb737/plot_gradient_boosting_early_stopping.py

+1
Original file line numberDiff line numberDiff line change
@@ -31,6 +31,7 @@
3131
License: BSD 3 clause
3232
3333
"""
34+
3435
# %%
3536
# Data Preparation
3637
# ----------------

dev/_downloads/d192b2d76067841f677150ddd9ea42bf/plot_gmm_init.py

-1
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,6 @@
3333
time to initialize and low number of GaussianMixture iterations to converge.
3434
"""
3535

36-
3736
# Author: Gordon Walsh <[email protected]>
3837
# Data generation code from Jake Vanderplas <[email protected]>
3938

dev/_downloads/scikit-learn-docs.zip

-107 Bytes
Binary file not shown.
-838 Bytes
-157 Bytes
-53 Bytes
-16 Bytes
377 Bytes
197 Bytes
-66 Bytes
-5 Bytes
599 Bytes
110 Bytes
57 Bytes
-174 Bytes
-65 Bytes
-73 Bytes
2.72 KB
-3.04 KB
-228 Bytes
-75 Bytes
-88 Bytes
-26 Bytes
170 Bytes
322 Bytes
-22 Bytes
-168 Bytes
34 Bytes
83 Bytes
176 Bytes
136 Bytes
-127 Bytes
-36 Bytes
-41 Bytes
197 Bytes
24 Bytes

dev/_sources/auto_examples/applications/plot_cyclical_feature_engineering.rst.txt

+1-1

dev/_sources/auto_examples/applications/plot_digits_denoising.rst.txt

+1-1

dev/_sources/auto_examples/applications/plot_face_recognition.rst.txt

+23-23

0 commit comments

Comments
 (0)