-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_reference_ops.py
146 lines (136 loc) · 5.24 KB
/
test_reference_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import unittest
import numpy as np
from onnx import TensorProto
from onnx.helper import (
make_graph,
make_model,
make_node,
make_tensor_value_info,
make_opsetid,
)
from onnx_array_api.ext_test_case import ExtTestCase
from onnx_array_api.reference import ExtendedReferenceEvaluator
class TestReferenceOps(ExtTestCase):
def test_fused_matmul(self):
model = make_model(
make_graph(
[make_node("FusedMatMul", ["X", "Y"], ["Z"], domain="com.microsoft")],
"name",
[
make_tensor_value_info("X", TensorProto.FLOAT, None),
make_tensor_value_info("Y", TensorProto.FLOAT, None),
],
[make_tensor_value_info("Z", TensorProto.FLOAT, None)],
),
opset_imports=[make_opsetid("", 18), make_opsetid("com.microsoft", 1)],
)
ref = ExtendedReferenceEvaluator(model)
a = np.arange(4).reshape(-1, 2)
got = ref.run(None, {"X": a, "Y": a})
self.assertEqualArray(a @ a, got[0])
def test_fused_matmul11(self):
model = make_model(
make_graph(
[
make_node(
"FusedMatMul",
["X", "Y"],
["Z"],
transA=1,
transB=1,
domain="com.microsoft",
)
],
"name",
[
make_tensor_value_info("X", TensorProto.FLOAT, None),
make_tensor_value_info("Y", TensorProto.FLOAT, None),
],
[make_tensor_value_info("Z", TensorProto.FLOAT, None)],
),
opset_imports=[make_opsetid("", 18), make_opsetid("com.microsoft", 1)],
)
ref = ExtendedReferenceEvaluator(model)
a = np.arange(4).reshape(-1, 2)
got = ref.run(None, {"X": a, "Y": a})
self.assertEqualArray(a.T @ a.T, got[0])
def test_memcpy(self):
model = make_model(
make_graph(
[
make_node("MemcpyToHost", ["X"], ["Z"]),
make_node("MemcpyFromHost", ["X"], ["Z"]),
],
"name",
[make_tensor_value_info("X", TensorProto.FLOAT, None)],
[make_tensor_value_info("Z", TensorProto.FLOAT, None)],
),
opset_imports=[make_opsetid("", 18), make_opsetid("com.microsoft", 1)],
ir_version=9,
)
a = np.arange(4).reshape(-1, 2).astype(np.float32)
ref = ExtendedReferenceEvaluator(model)
got = ref.run(None, {"X": a})
self.assertEqualArray(a, got[0])
def test_quick_gelu(self):
from onnxruntime import InferenceSession
for alpha in [0.0, 2.0]:
model = make_model(
make_graph(
[
make_node(
"QuickGelu",
["X"],
["Z"],
domain="com.microsoft",
alpha=alpha,
)
],
"name",
[make_tensor_value_info("X", TensorProto.FLOAT, None)],
[make_tensor_value_info("Z", TensorProto.FLOAT, None)],
),
opset_imports=[make_opsetid("", 18), make_opsetid("com.microsoft", 1)],
ir_version=9,
)
sess = InferenceSession(
model.SerializeToString(), providers=["CPUExecutionProvider"]
)
a = np.arange(4).reshape(-1, 2).astype(np.float32)
expected = sess.run(None, {"X": a})
ref = ExtendedReferenceEvaluator(model)
got = ref.run(None, {"X": a})
self.assertEqualArray(expected[0], got[0])
def test_scatter_elements(self):
model = make_model(
make_graph(
[
make_node(
"ScatterElements",
["data", "indices", "updates"],
["Z"],
axis=3,
reduction="add",
)
],
"name",
[
make_tensor_value_info("data", TensorProto.FLOAT, None),
make_tensor_value_info("indices", TensorProto.INT64, None),
make_tensor_value_info("updates", TensorProto.FLOAT, None),
],
[make_tensor_value_info("Z", TensorProto.FLOAT, None)],
),
opset_imports=[make_opsetid("", 18)],
)
data = np.zeros(2**4, dtype=np.float32).reshape((2, 2, 2, 2))
indices = np.array([[[[0]]]], dtype=np.int64)
updates = np.array([[[[1]]]], dtype=np.float32)
y = np.array(
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.float32
).reshape((2, 2, 2, 2))
ref = ExtendedReferenceEvaluator(model)
got = ref.run(None, {"data": data, "indices": indices, "updates": updates})
self.assertEqualArray(y, got[0])
if __name__ == "__main__":
unittest.main(verbosity=2)