|
| 1 | +""" |
| 2 | +
|
| 3 | +.. _l-onnx-array-onnxruntime-profiling: |
| 4 | +
|
| 5 | +Profiling with onnxruntime |
| 6 | +========================== |
| 7 | +
|
| 8 | +*onnxruntime* optimizes the onnx graph by default before running |
| 9 | +the inference. It modifies, fuses or add new operators. |
| 10 | +Some of them are standard onnx operators, some of them |
| 11 | +are implemented in onnxruntime (see `Supported Operators |
| 12 | +<https://github.com/microsoft/onnxruntime/blob/main/docs/OperatorKernels.md>`_). |
| 13 | +This example profiles the two models. |
| 14 | +
|
| 15 | +Optimize a model with onnxruntime |
| 16 | ++++++++++++++++++++++++++++++++++ |
| 17 | +""" |
| 18 | +import os |
| 19 | +import numpy |
| 20 | +import matplotlib.pyplot as plt |
| 21 | +from onnxruntime import get_available_providers |
| 22 | +from onnx_array_api.ext_test_case import example_path |
| 23 | +from onnx_array_api.ort.ort_optimizers import ort_optimized_model |
| 24 | +from onnx_array_api.ort.ort_profile import ort_profile |
| 25 | + |
| 26 | + |
| 27 | +filename = example_path("data/small.onnx") |
| 28 | +optimized = filename + ".optimized.onnx" |
| 29 | + |
| 30 | +if not os.path.exists(optimized): |
| 31 | + ort_optimized_model(filename, output=optimized) |
| 32 | +print(optimized) |
| 33 | + |
| 34 | +############################# |
| 35 | +# Profiling |
| 36 | +# +++++++++ |
| 37 | + |
| 38 | +feeds = {"input": numpy.random.random((1, 3, 112, 112)).astype(numpy.float32)} |
| 39 | +prof_base = ort_profile( |
| 40 | + filename, |
| 41 | + feeds, |
| 42 | + repeat=6, |
| 43 | + disable_optimization=True, |
| 44 | + providers=["CPUExecutionProvider"], |
| 45 | +) |
| 46 | +prof_base.to_excel("prof_base.xlsx", index=False) |
| 47 | +prof_base |
| 48 | + |
| 49 | +####################################### |
| 50 | +# And the optimized model. |
| 51 | + |
| 52 | +prof_opt = ort_profile( |
| 53 | + optimized, |
| 54 | + feeds, |
| 55 | + repeat=6, |
| 56 | + disable_optimization=True, |
| 57 | + providers=["CPUExecutionProvider"], |
| 58 | +) |
| 59 | +prof_opt |
| 60 | + |
| 61 | +####################################### |
| 62 | +# And the graph is: |
| 63 | + |
| 64 | + |
| 65 | +def plot_profile(df, ax0, ax1=None, title=None): |
| 66 | + gr_dur = ( |
| 67 | + df[["dur", "args_op_name"]].groupby("args_op_name").sum().sort_values("dur") |
| 68 | + ) |
| 69 | + gr_dur.plot.barh(ax=ax0) |
| 70 | + if title is not None: |
| 71 | + ax0.set_title(title) |
| 72 | + if ax1 is not None: |
| 73 | + gr_n = ( |
| 74 | + df[["dur", "args_op_name"]] |
| 75 | + .groupby("args_op_name") |
| 76 | + .count() |
| 77 | + .sort_values("dur") |
| 78 | + ) |
| 79 | + gr_n = gr_n.loc[gr_dur.index, :] |
| 80 | + gr_n.plot.barh(ax=ax1) |
| 81 | + ax1.set_title("n occurences") |
| 82 | + |
| 83 | + |
| 84 | +unique_op = set(prof_base["args_op_name"]) |
| 85 | +fig, ax = plt.subplots(2, 2, figsize=(10, len(unique_op)), sharex="col") |
| 86 | +plot_profile(prof_base, ax[0, 0], ax[0, 1], title="baseline") |
| 87 | +plot_profile(prof_opt, ax[1, 0], ax[1, 1], title="optimized") |
| 88 | + |
| 89 | +fig.savefig("plot_profiling.png") |
| 90 | + |
| 91 | +################################################## |
| 92 | +# Merging profiles |
| 93 | +# ++++++++++++++++ |
| 94 | +# |
| 95 | +# Let's try to compare both profiles assuming every iteration |
| 96 | +# process the same image and the input and output size are the |
| 97 | +# same at every iteration. |
| 98 | + |
| 99 | + |
| 100 | +def preprocess(df): |
| 101 | + groupkey = [ |
| 102 | + "args_op_name", |
| 103 | + "args_output_type_shape", |
| 104 | + "args_input_type_shape", |
| 105 | + "args_provider", |
| 106 | + ] |
| 107 | + |
| 108 | + def _idx(row): |
| 109 | + """ |
| 110 | + There may be multiple node with the same |
| 111 | + input/output types and shapes. |
| 112 | + This function gives every instance a distinct id. |
| 113 | + First unique op with same I/O receives the index 0. |
| 114 | + The counter restart when the session goes to the |
| 115 | + next image. |
| 116 | + """ |
| 117 | + if row["cat"] == "Session": |
| 118 | + occurences[0] = {} |
| 119 | + return -1 |
| 120 | + assert "idx" not in groupkey |
| 121 | + vals = [row[k] for k in groupkey] |
| 122 | + key = tuple(map(str, vals)) |
| 123 | + if key not in occurences[0]: |
| 124 | + occurences[0][key] = 0 |
| 125 | + else: |
| 126 | + occurences[0][key] += 1 |
| 127 | + return occurences[0][key] |
| 128 | + |
| 129 | + df = df.copy() |
| 130 | + occurences = [{}] |
| 131 | + df["idx"] = df.apply(_idx, axis=1) |
| 132 | + df = df[(df["cat"] == "Node") & df["name"].str.contains("kernel_time")] |
| 133 | + groupkey.append("idx") |
| 134 | + for c in groupkey: |
| 135 | + if c != "idx": |
| 136 | + df[c] = df[c].apply(str) |
| 137 | + gr = df[groupkey + ["dur"]].groupby(groupkey) |
| 138 | + return gr.sum() |
| 139 | + |
| 140 | + |
| 141 | +base = preprocess(prof_base) |
| 142 | +opti = preprocess(prof_opt) |
| 143 | +merge = base.merge( |
| 144 | + opti, how="outer", suffixes=("base", "opti"), left_index=True, right_index=True |
| 145 | +) |
| 146 | +merge = merge.reset_index(drop=False) |
| 147 | +merge.to_excel("plot_profiling_merged.xlsx", index=False) |
| 148 | +merge |
| 149 | + |
| 150 | + |
| 151 | +##################################################### |
| 152 | +# Aggregation |
| 153 | + |
| 154 | + |
| 155 | +def classify(row): |
| 156 | + if numpy.isnan(row["duropti"]): |
| 157 | + return "-" |
| 158 | + if numpy.isnan(row["durbase"]): |
| 159 | + return "+" |
| 160 | + return "=" |
| 161 | + |
| 162 | + |
| 163 | +keys = {"float": "f"} |
| 164 | + |
| 165 | + |
| 166 | +def process_shape(s): |
| 167 | + value = eval(s) |
| 168 | + ns = [] |
| 169 | + for v in value: |
| 170 | + if len(v) != 1: |
| 171 | + raise NotImplementedError(f"Unexpected value {v} in {s!r}.") |
| 172 | + k, v = list(v.items())[0] |
| 173 | + n = "-".join([keys[k], "x".join(map(str, v))]) |
| 174 | + ns.append(n) |
| 175 | + return ",".join(ns) |
| 176 | + |
| 177 | + |
| 178 | +def label(row): |
| 179 | + name = row["args_op_name"] |
| 180 | + inshape = process_shape(row["args_input_type_shape"]) |
| 181 | + outshape = process_shape(row["args_output_type_shape"]) |
| 182 | + side = row["side"][0] |
| 183 | + prov = row["args_provider"][:3] |
| 184 | + idx = row["idx"] |
| 185 | + return f"[{side}{prov}]{name}({inshape})->{outshape}[{idx}]" |
| 186 | + |
| 187 | + |
| 188 | +df = merge.copy() |
| 189 | +df["side"] = df.apply(classify, axis=1) |
| 190 | +df["label"] = df.apply(label, axis=1) |
| 191 | +gr = ( |
| 192 | + df[["label", "durbase", "duropti", "idx"]] |
| 193 | + .groupby("label") |
| 194 | + .agg({"durbase": numpy.sum, "duropti": numpy.sum, "idx": max}) |
| 195 | +) |
| 196 | +gr |
| 197 | + |
| 198 | +################################ |
| 199 | +# Final plot |
| 200 | +# ++++++++++ |
| 201 | + |
| 202 | +# let's filter out unsignificant operator. |
| 203 | +grmax = gr["durbase"] + gr["duropti"] |
| 204 | +total = grmax.sum() |
| 205 | +grmax /= total |
| 206 | +gr = gr[grmax >= 0.01] |
| 207 | + |
| 208 | + |
| 209 | +fig, ax = plt.subplots(1, 2, figsize=(14, min(gr.shape[0], 500)), sharey=True) |
| 210 | +gr[["durbase", "duropti"]].plot.barh(ax=ax[0]) |
| 211 | +ax[0].set_title("Side by side duration") |
| 212 | +gr = gr.copy() |
| 213 | +gr["idx"] += 1 |
| 214 | +gr[["idx"]].plot.barh(ax=ax[1]) |
| 215 | +ax[1].set_title("Side by side count") |
| 216 | +fig.tight_layout() |
| 217 | +fig.savefig("plot_profiling_side_by_side.png") |
| 218 | + |
| 219 | + |
| 220 | +######################################## |
| 221 | +# On CUDA |
| 222 | +# +++++++ |
| 223 | + |
| 224 | + |
| 225 | +if "CUDAExecutionProvider" in get_available_providers(): |
| 226 | + print("Profiling on CUDA") |
| 227 | + prof_base = ort_profile( |
| 228 | + filename, |
| 229 | + feeds, |
| 230 | + repeat=6, |
| 231 | + disable_optimization=True, |
| 232 | + providers=["CUDAExecutionProvider"], |
| 233 | + ) |
| 234 | + prof_opti = ort_profile( |
| 235 | + optimized, |
| 236 | + feeds, |
| 237 | + repeat=6, |
| 238 | + disable_optimization=True, |
| 239 | + providers=["CUDAExecutionProvider"], |
| 240 | + ) |
| 241 | + |
| 242 | + unique_op = set(prof_base["args_op_name"]) |
| 243 | + fig, ax = plt.subplots(2, 2, figsize=(10, len(unique_op)), sharex="col") |
| 244 | + plot_profile(prof_base, ax[0, 0], ax[0, 1], title="baseline") |
| 245 | + plot_profile(prof_opt, ax[1, 0], ax[1, 1], title="optimized") |
| 246 | + fig.savefig("plot_profiling_cuda.png") |
| 247 | +else: |
| 248 | + print(f"CUDA not available in {get_available_providers()}") |
| 249 | + fig, ax = None, None |
| 250 | + |
| 251 | +ax |
0 commit comments