-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathesn_test.py
66 lines (59 loc) · 2.28 KB
/
esn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Echo State recurrent Network (ESN)."""
import pytest
import numpy as np
import tensorflow as tf
from tensorflow_addons.layers.esn import ESN
from tensorflow_addons.utils import test_utils
@pytest.mark.usefixtures("maybe_run_functions_eagerly")
@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64])
def layer_test_esn(dtype):
inp = np.asanyarray(
[[[1.0, 1.0, 1.0, 1.0]], [[2.0, 2.0, 2.0, 2.0]], [[3.0, 3.0, 3.0, 3.0]]]
).astype(dtype)
out = np.asarray([[2.5, 2.5, 2.5], [4.5, 4.5, 4.5], [6.5, 6.5, 6.5]]).astype(dtype)
const_initializer = tf.constant_initializer(0.5)
kwargs = {
"units": 3,
"connectivity": 1,
"leaky": 1,
"spectral_radius": 0.9,
"use_norm2": True,
"use_bias": True,
"activation": None,
"kernel_initializer": const_initializer,
"recurrent_initializer": const_initializer,
"bias_initializer": const_initializer,
"dtype": dtype,
}
test_utils.layer_test(ESN, kwargs=kwargs, input_data=inp, expected_output=out)
@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64])
def test_serialization(dtype):
esn = ESN(
units=3,
connectivity=1,
leaky=1,
spectral_radius=0.9,
use_norm2=False,
use_bias=True,
activation=None,
kernel_initializer="ones",
recurrent_initializer="ones",
bias_initializer="ones",
)
serialized_esn = tf.keras.layers.serialize(esn)
new_layer = tf.keras.layers.deserialize(serialized_esn)
assert esn.get_config() == new_layer.get_config()