-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathaverage_wrapper.py
186 lines (157 loc) · 6.57 KB
/
average_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import abc
import warnings
import tensorflow as tf
from tensorflow_addons.optimizers import KerasLegacyOptimizer
from tensorflow_addons.utils import types
from typeguard import typechecked
class AveragedOptimizerWrapper(KerasLegacyOptimizer, metaclass=abc.ABCMeta):
@typechecked
def __init__(
self,
optimizer: types.Optimizer,
name: str = "AverageOptimizer",
**kwargs,
):
super().__init__(name, **kwargs)
if isinstance(optimizer, str):
if (
hasattr(tf.keras.optimizers, "legacy")
and KerasLegacyOptimizer == tf.keras.optimizers.legacy.Optimizer
):
optimizer = tf.keras.optimizers.get(
optimizer, use_legacy_optimizer=True
)
else:
optimizer = tf.keras.optimizers.get(optimizer)
if not isinstance(optimizer, KerasLegacyOptimizer):
raise TypeError(
"optimizer is not an object of tf.keras.optimizers.legacy.Optimizer "
)
self._optimizer = optimizer
self._track_trackable(self._optimizer, "awg_optimizer")
def _create_slots(self, var_list):
self._optimizer._create_slots(var_list=var_list)
for var in var_list:
self.add_slot(var, "average")
def _create_hypers(self):
self._optimizer._create_hypers()
def _prepare_local(self, var_device, var_dtype, apply_state):
return self._optimizer._prepare_local(var_device, var_dtype, apply_state)
def apply_gradients(self, grads_and_vars, name=None, **kwargs):
self._optimizer._iterations = self.iterations
return super().apply_gradients(grads_and_vars, name, **kwargs)
@abc.abstractmethod
def average_op(self, var, average_var, local_apply_state):
raise NotImplementedError
def _apply_average_op(self, train_op, var, apply_state):
apply_state = apply_state or {}
local_apply_state = apply_state.get((var.device, var.dtype.base_dtype))
if local_apply_state is None:
local_apply_state = self._fallback_apply_state(
var.device, var.dtype.base_dtype
)
average_var = self.get_slot(var, "average")
return self.average_op(var, average_var, local_apply_state)
def _resource_apply_dense(self, grad, var, apply_state=None):
if "apply_state" in self._optimizer._dense_apply_args:
train_op = self._optimizer._resource_apply_dense(
grad, var, apply_state=apply_state
)
else:
train_op = self._optimizer._resource_apply_dense(grad, var)
average_op = self._apply_average_op(train_op, var, apply_state)
return tf.group(train_op, average_op)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
if "apply_state" in self._optimizer._sparse_apply_args:
train_op = self._optimizer._resource_apply_sparse(
grad, var, indices, apply_state=apply_state
)
else:
train_op = self._optimizer._resource_apply_sparse(grad, var, indices)
average_op = self._apply_average_op(train_op, var, apply_state)
return tf.group(train_op, average_op)
def _resource_apply_sparse_duplicate_indices(
self, grad, var, indices, apply_state=None
):
if "apply_state" in self._optimizer._sparse_apply_args:
train_op = self._optimizer._resource_apply_sparse_duplicate_indices(
grad, var, indices, apply_state=apply_state
)
else:
train_op = self._optimizer._resource_apply_sparse_duplicate_indices(
grad, var, indices
)
average_op = self._apply_average_op(train_op, var, apply_state)
return tf.group(train_op, average_op)
def assign_average_vars(self, var_list):
"""Assign variables in var_list with their respective averages.
Args:
var_list: List of model variables to be assigned to their average.
Returns:
assign_op: The op corresponding to the assignment operation of
variables to their average.
Example:
```python
model = tf.Sequential([...])
opt = tfa.optimizers.SWA(
tf.keras.optimizers.SGD(lr=2.0), 100, 10)
model.compile(opt, ...)
model.fit(x, y, ...)
# Update the weights to their mean before saving
opt.assign_average_vars(model.variables)
model.save('model.h5')
```
"""
assign_ops = []
for var in var_list:
try:
assign_ops.append(
var.assign(
self.get_slot(var, "average"),
use_locking=self._use_locking,
)
)
except Exception as e:
warnings.warn("Unable to assign average slot to {} : {}".format(var, e))
return tf.group(assign_ops)
def get_config(self):
config = {
"optimizer": tf.keras.optimizers.serialize(self._optimizer),
}
base_config = super().get_config()
return {**base_config, **config}
@classmethod
def from_config(cls, config, custom_objects=None):
optimizer = tf.keras.optimizers.deserialize(
config.pop("optimizer"), custom_objects=custom_objects
)
return cls(optimizer, **config)
@property
def weights(self):
return self._weights + self._optimizer.weights
@property
def lr(self):
return self._optimizer._get_hyper("learning_rate")
@lr.setter
def lr(self, lr):
self._optimizer._set_hyper("learning_rate", lr) #
@property
def learning_rate(self):
return self._optimizer._get_hyper("learning_rate")
@learning_rate.setter
def learning_rate(self, learning_rate):
self._optimizer._set_hyper("learning_rate", learning_rate)