-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathutils.py
75 lines (62 loc) · 2.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Additional Utilities used for tfa.optimizers."""
import re
import tensorflow as tf
from typing import List
def fit_bn(model, *args, **kwargs):
"""Resets batch normalization layers of model, and recalculates the
statistics for each batchnorm layer by running a pass on the data.
Args:
model: An instance of tf.keras.Model
*args, **kwargs: Params that'll be passed to `.fit` method of model
"""
kwargs["epochs"] = 1
if not isinstance(model, tf.keras.Model):
raise TypeError("model must be an instance of tf.keras.Model")
if not model.built:
raise ValueError("Call `fit_bn` after the model is built and trained")
assign_ops = []
for layer in model.layers:
if isinstance(layer, tf.keras.layers.BatchNormalization):
assign_ops.extend(
[
layer.moving_mean.assign(tf.zeros_like(layer.moving_mean)),
layer.moving_variance.assign(tf.ones_like(layer.moving_variance)),
]
)
_trainable = model.trainable
_metrics = model._metrics
model.trainable = False
model._metrics = []
model.fit(*args, **kwargs)
model.trainable = _trainable
model._metrics = _metrics
def get_variable_name(variable) -> str:
"""Get the variable name from the variable tensor."""
param_name = variable.name
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
def is_variable_matched_by_regexes(variable, regexes: List[str]) -> bool:
"""Whether variable is matched in regexes list by its name."""
if regexes:
# var_name = get_variable_name(variable)
var_name = variable.name
for r in regexes:
if re.search(r, var_name):
return True
return False