-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathhyperparameter_optimization.py
98 lines (77 loc) · 3.35 KB
/
hyperparameter_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright 2021 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Example of automated hyper-parameter tuning with TensorFlow Decision Forests.
This example trains, displays, evaluates and export a Gradient Boosted Tree
model.
Usage example:
pip3 install tensorflow_decision_forests -U
python3 hyperparameter_optimization.py
Or
bazel run -c opt \
//tensorflow_decision_forests/examples:hyperparameter_optimization
\
-- --alsologtostderr
"""
from absl import app
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_decision_forests as tfdf
import tf_keras
def main(argv):
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
# Download the Adult dataset.
dataset_path = tf_keras.utils.get_file(
"adult.csv",
"https://raw.githubusercontent.com/google/yggdrasil-decision-forests/"
"main/yggdrasil_decision_forests/test_data/dataset/adult.csv")
# Load a dataset into a Pandas Dataframe.
dataset_df = pd.read_csv(dataset_path) # "df" for Pandas's DataFrame.
print("First the first three examples:")
print(dataset_df.head(3))
# Notice that the dataset contains a mix of numerical and categorical
# features. TensorFlow Decision Forests handles them automatically (e.g. no
# need for one-hot encoding or normalization; except for the label).
# Split the dataset into a training and a testing dataset.
test_indices = np.random.rand(len(dataset_df)) < 0.30
test_ds_pd = dataset_df[test_indices]
train_ds_pd = dataset_df[~test_indices]
print(f"{len(train_ds_pd)} examples in training"
f", {len(test_ds_pd)} examples for testing.")
# Converts datasets from Pandas dataframe to TensorFlow dataset format.
train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label="income")
test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label="income")
# Tune the model.
#
# The hyper-parameters to optimize are automatically set with
# "use_predefined_hps=True". See
# https://www.tensorflow.org/decision_forests/tutorials/automatic_tuning_colab
# for an example where the hyper-parameter space is configured manually.
tuner = tfdf.tuner.RandomSearch(num_trials=30, use_predefined_hps=True)
model = tfdf.keras.GradientBoostedTreesModel(verbose=2, tuner=tuner)
model.fit(train_ds)
# Some information about the model.
print(model.summary())
# Evaluates the model on the test dataset.
model.compile(metrics=["accuracy"])
evaluation = model.evaluate(test_ds)
print(f"BinaryCrossentropyloss: {evaluation[0]}")
print(f"Accuracy: {evaluation[1]}")
# Exports the model to disk in the SavedModel format for later re-use. This
# model can be used with TensorFlow Serving and Yggdrasil Decision Forests
# (https://ydf.readthedocs.io/en/latest/serving_apis.html).
model.save("/tmp/my_saved_model")
if __name__ == "__main__":
app.run(main)