-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathsaved_model_module_test.py
69 lines (53 loc) · 1.86 KB
/
saved_model_module_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_hub.saved_model."""
import os
import tensorflow as tf
import tensorflow_hub as hub
def _double(input_):
return input_ * 2
class MyModel(tf.Module):
@tf.function
def __call__(self, input_):
return _double(input_)
class SavedModelTest(tf.test.TestCase):
def _create_tf2_saved_model(self):
model_dir = os.path.join(self.get_temp_dir(), "saved_model")
model = MyModel()
@tf.function
def serving_default(input_):
return {"output": model(input_)}
signature_function = serving_default.get_concrete_function(
tf.TensorSpec(shape=[3,], dtype=tf.float32)
)
tf.saved_model.save(
model,
model_dir,
signatures={
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_function
},
)
return model_dir
def testLoadSavedModel(self):
saved_model_path = self._create_tf2_saved_model()
loaded = hub.load(saved_model_path)
self.assertAllClose(
loaded.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY](
tf.constant([2.0, 4.0, 5.0])
)["output"],
tf.constant([4.0, 8.0, 10.0]),
)
if __name__ == "__main__":
tf.test.main()