-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathmodel_builder_test.py
355 lines (322 loc) · 12.7 KB
/
model_builder_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.models.model_builder."""
from absl.testing import parameterized
from google.protobuf import text_format
from object_detection.builders import model_builder
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.protos import hyperparams_pb2
from object_detection.protos import losses_pb2
from object_detection.protos import model_pb2
from object_detection.utils import test_case
class ModelBuilderTest(test_case.TestCase, parameterized.TestCase):
def default_ssd_feature_extractor(self):
raise NotImplementedError
def default_faster_rcnn_feature_extractor(self):
raise NotImplementedError
def ssd_feature_extractors(self):
raise NotImplementedError
def get_override_base_feature_extractor_hyperparams(self, extractor_type):
raise NotImplementedError
def faster_rcnn_feature_extractors(self):
raise NotImplementedError
def create_model(self, model_config, is_training=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
"""
return model_builder.build(model_config, is_training=is_training)
def create_default_ssd_model_proto(self):
"""Creates a DetectionModel proto with ssd model fields populated."""
model_text_proto = """
ssd {
feature_extractor {
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
box_coder {
faster_rcnn_box_coder {
}
}
matcher {
argmax_matcher {
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
aspect_ratios: 1.0
}
}
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
}
loss {
classification_loss {
weighted_softmax {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
}
}"""
model_proto = model_pb2.DetectionModel()
text_format.Merge(model_text_proto, model_proto)
model_proto.ssd.feature_extractor.type = (self.
default_ssd_feature_extractor())
return model_proto
def create_default_faster_rcnn_model_proto(self):
"""Creates a DetectionModel proto with FasterRCNN model fields populated."""
model_text_proto = """
faster_rcnn {
inplace_batchnorm_update: false
num_classes: 3
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.01
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
}"""
model_proto = model_pb2.DetectionModel()
text_format.Merge(model_text_proto, model_proto)
(model_proto.faster_rcnn.feature_extractor.type
) = self.default_faster_rcnn_feature_extractor()
return model_proto
def test_create_ssd_models_from_config(self):
model_proto = self.create_default_ssd_model_proto()
for extractor_type, extractor_class in self.ssd_feature_extractors().items(
):
model_proto.ssd.feature_extractor.type = extractor_type
model_proto.ssd.feature_extractor.override_base_feature_extractor_hyperparams = (
self.get_override_base_feature_extractor_hyperparams(extractor_type))
model = model_builder.build(model_proto, is_training=True)
self.assertIsInstance(model, ssd_meta_arch.SSDMetaArch)
self.assertIsInstance(model._feature_extractor, extractor_class)
def test_create_ssd_fpn_model_from_config(self):
model_proto = self.create_default_ssd_model_proto()
model_proto.ssd.feature_extractor.fpn.min_level = 3
model_proto.ssd.feature_extractor.fpn.max_level = 7
model = model_builder.build(model_proto, is_training=True)
self.assertEqual(model._feature_extractor._fpn_min_level, 3)
self.assertEqual(model._feature_extractor._fpn_max_level, 7)
@parameterized.named_parameters(
{
'testcase_name': 'mask_rcnn_with_matmul',
'use_matmul_crop_and_resize': False,
'enable_mask_prediction': True
},
{
'testcase_name': 'mask_rcnn_without_matmul',
'use_matmul_crop_and_resize': True,
'enable_mask_prediction': True
},
{
'testcase_name': 'faster_rcnn_with_matmul',
'use_matmul_crop_and_resize': False,
'enable_mask_prediction': False
},
{
'testcase_name': 'faster_rcnn_without_matmul',
'use_matmul_crop_and_resize': True,
'enable_mask_prediction': False
},
)
def test_create_faster_rcnn_models_from_config(self,
use_matmul_crop_and_resize,
enable_mask_prediction):
model_proto = self.create_default_faster_rcnn_model_proto()
faster_rcnn_config = model_proto.faster_rcnn
faster_rcnn_config.use_matmul_crop_and_resize = use_matmul_crop_and_resize
if enable_mask_prediction:
faster_rcnn_config.second_stage_mask_prediction_loss_weight = 3.0
mask_predictor_config = (
faster_rcnn_config.second_stage_box_predictor.mask_rcnn_box_predictor)
mask_predictor_config.predict_instance_masks = True
for extractor_type, extractor_class in (
self.faster_rcnn_feature_extractors().items()):
faster_rcnn_config.feature_extractor.type = extractor_type
model = model_builder.build(model_proto, is_training=True)
self.assertIsInstance(model, faster_rcnn_meta_arch.FasterRCNNMetaArch)
self.assertIsInstance(model._feature_extractor, extractor_class)
if enable_mask_prediction:
self.assertAlmostEqual(model._second_stage_mask_loss_weight, 3.0)
def test_create_faster_rcnn_model_from_config_with_example_miner(self):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.hard_example_miner.num_hard_examples = 64
model = model_builder.build(model_proto, is_training=True)
self.assertIsNotNone(model._hard_example_miner)
def test_create_rfcn_model_from_config(self):
model_proto = self.create_default_faster_rcnn_model_proto()
rfcn_predictor_config = (
model_proto.faster_rcnn.second_stage_box_predictor.rfcn_box_predictor)
rfcn_predictor_config.conv_hyperparams.op = hyperparams_pb2.Hyperparams.CONV
for extractor_type, extractor_class in (
self.faster_rcnn_feature_extractors().items()):
model_proto.faster_rcnn.feature_extractor.type = extractor_type
model = model_builder.build(model_proto, is_training=True)
self.assertIsInstance(model, rfcn_meta_arch.RFCNMetaArch)
self.assertIsInstance(model._feature_extractor, extractor_class)
@parameterized.parameters(True, False)
def test_create_faster_rcnn_from_config_with_crop_feature(
self, output_final_box_features):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.output_final_box_features = (
output_final_box_features)
_ = model_builder.build(model_proto, is_training=True)
def test_invalid_model_config_proto(self):
model_proto = ''
with self.assertRaisesRegex(
ValueError, 'model_config not of type model_pb2.DetectionModel.'):
model_builder.build(model_proto, is_training=True)
def test_unknown_meta_architecture(self):
model_proto = model_pb2.DetectionModel()
with self.assertRaisesRegex(ValueError, 'Unknown meta architecture'):
model_builder.build(model_proto, is_training=True)
def test_unknown_ssd_feature_extractor(self):
model_proto = self.create_default_ssd_model_proto()
model_proto.ssd.feature_extractor.type = 'unknown_feature_extractor'
with self.assertRaises(ValueError):
model_builder.build(model_proto, is_training=True)
def test_unknown_faster_rcnn_feature_extractor(self):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.feature_extractor.type = 'unknown_feature_extractor'
with self.assertRaises(ValueError):
model_builder.build(model_proto, is_training=True)
def test_invalid_first_stage_nms_iou_threshold(self):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.first_stage_nms_iou_threshold = 1.1
with self.assertRaisesRegex(ValueError,
r'iou_threshold not in \[0, 1\.0\]'):
model_builder.build(model_proto, is_training=True)
model_proto.faster_rcnn.first_stage_nms_iou_threshold = -0.1
with self.assertRaisesRegex(ValueError,
r'iou_threshold not in \[0, 1\.0\]'):
model_builder.build(model_proto, is_training=True)
def test_invalid_second_stage_batch_size(self):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.first_stage_max_proposals = 1
model_proto.faster_rcnn.second_stage_batch_size = 2
with self.assertRaisesRegex(
ValueError, 'second_stage_batch_size should be no greater '
'than first_stage_max_proposals.'):
model_builder.build(model_proto, is_training=True)
def test_invalid_faster_rcnn_batchnorm_update(self):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.inplace_batchnorm_update = True
with self.assertRaisesRegex(ValueError,
'inplace batchnorm updates not supported'):
model_builder.build(model_proto, is_training=True)
def test_create_experimental_model(self):
model_text_proto = """
experimental_model {
name: 'model42'
}"""
build_func = lambda *args: 42
model_builder.EXPERIMENTAL_META_ARCH_BUILDER_MAP['model42'] = build_func
model_proto = model_pb2.DetectionModel()
text_format.Merge(model_text_proto, model_proto)
self.assertEqual(model_builder.build(model_proto, is_training=True), 42)