-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathtest_case_test.py
73 lines (62 loc) · 2.71 KB
/
test_case_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for google3.third_party.tensorflow_models.object_detection.utils.test_case."""
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.utils import test_case
class TestCaseTest(test_case.TestCase):
def test_simple(self):
def graph_fn(tensora, tensorb):
return tf.tensordot(tensora, tensorb, axes=1)
tensora_np = np.ones(20)
tensorb_np = tensora_np * 2
output = self.execute(graph_fn, [tensora_np, tensorb_np])
self.assertAllClose(output, 40.0)
def test_two_outputs(self):
def graph_fn(tensora, tensorb):
return tensora + tensorb, tensora - tensorb
tensora_np = np.ones(20)
tensorb_np = tensora_np * 2
output = self.execute(graph_fn, [tensora_np, tensorb_np])
self.assertAllClose(output[0], tensora_np + tensorb_np)
self.assertAllClose(output[1], tensora_np - tensorb_np)
def test_function_with_tf_assert(self):
def compute_fn(image):
return tf.image.pad_to_bounding_box(image, 0, 0, 40, 40)
image_np = np.random.rand(2, 20, 30, 3)
output = self.execute(compute_fn, [image_np])
self.assertAllEqual(output.shape, [2, 40, 40, 3])
def test_tf2_only_test(self):
"""Set up tests only to run with TF2."""
if self.is_tf2():
def graph_fn(tensora, tensorb):
return tensora + tensorb, tensora - tensorb
tensora_np = np.ones(20)
tensorb_np = tensora_np * 2
output = self.execute_tf2(graph_fn, [tensora_np, tensorb_np])
self.assertAllClose(output[0], tensora_np + tensorb_np)
self.assertAllClose(output[1], tensora_np - tensorb_np)
def test_tpu_only_test(self):
"""Set up tests only to run with TPU."""
if self.has_tpu():
def graph_fn(tensora, tensorb):
return tensora + tensorb, tensora - tensorb
tensora_np = np.ones(20)
tensorb_np = tensora_np * 2
output = self.execute_tpu(graph_fn, [tensora_np, tensorb_np])
self.assertAllClose(output[0], tensora_np + tensorb_np)
self.assertAllClose(output[1], tensora_np - tensorb_np)
if __name__ == '__main__':
tf.test.main()