-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathbernoulli.py
291 lines (246 loc) · 11 KB
/
bernoulli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The Bernoulli distribution class."""
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import sigmoid as sigmoid_bijector
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.distributions import kullback_leibler
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import distribution_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import prefer_static as ps
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import samplers
from tensorflow_probability.python.internal import tensor_util
class Bernoulli(
distribution.DiscreteDistributionMixin,
distribution.AutoCompositeTensorDistribution):
"""Bernoulli distribution.
The Bernoulli distribution with `probs` parameter, i.e., the probability of a
`1` outcome (vs a `0` outcome).
"""
def __init__(self,
logits=None,
probs=None,
dtype=tf.int32,
validate_args=False,
allow_nan_stats=True,
name='Bernoulli'):
"""Construct Bernoulli distributions.
Args:
logits: An N-D `Tensor` representing the log-odds of a `1` event. Each
entry in the `Tensor` parameterizes an independent Bernoulli
distribution where the probability of an event is sigmoid(logits). Only
one of `logits` or `probs` should be passed in.
probs: An N-D `Tensor` representing the probability of a `1`
event. Each entry in the `Tensor` parameterizes an independent
Bernoulli distribution. Only one of `logits` or `probs` should be passed
in.
dtype: The type of the event samples. Default: `int32`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`,
statistics (e.g., mean, mode, variance) use the value "`NaN`" to
indicate the result is undefined. When `False`, an exception is raised
if one or more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
Raises:
ValueError: If p and logits are passed, or if neither are passed.
"""
parameters = dict(locals())
if (probs is None) == (logits is None):
raise ValueError('Must pass probs or logits, but not both.')
with tf.name_scope(name) as name:
self._probs = tensor_util.convert_nonref_to_tensor(
probs, dtype_hint=tf.float32, name='probs')
self._logits = tensor_util.convert_nonref_to_tensor(
logits, dtype_hint=tf.float32, name='logits')
super(Bernoulli, self).__init__(
dtype=dtype,
reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
return dict(
logits=parameter_properties.ParameterProperties(),
probs=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=sigmoid_bijector.Sigmoid,
is_preferred=False))
@property
def logits(self):
"""Input argument `logits`."""
return self._logits
@property
def probs(self):
"""Input argument `probs`."""
return self._probs
def _event_shape_tensor(self):
return tf.constant([], dtype=tf.int32)
def _event_shape(self):
return tf.TensorShape([])
def _sample_n(self, n, seed=None):
probs = self._probs_parameter_no_checks()
new_shape = ps.concat([[n], ps.shape(probs)], 0)
uniform = samplers.uniform(new_shape, seed=seed, dtype=probs.dtype)
sample = tf.less(uniform, probs)
return tf.cast(sample, self.dtype)
def _log_prob(self, event):
log_probs0, log_probs1 = self._outcome_log_probs()
event = tf.cast(event, log_probs0.dtype)
return (tf.math.multiply_no_nan(log_probs0, 1 - event) +
tf.math.multiply_no_nan(log_probs1, event))
def _outcome_log_probs(self):
if self._logits is None:
p = tf.convert_to_tensor(self._probs)
return tf.math.log1p(-p), tf.math.log(p)
s = tf.convert_to_tensor(self._logits)
# softplus(s) = -Log[1 - p]
# -softplus(-s) = Log[p]
# softplus(+inf) = +inf, softplus(-inf) = 0, so...
# logits = -inf ==> log_probs0 = 0, log_probs1 = -inf (as desired)
# logits = +inf ==> log_probs0 = -inf, log_probs1 = 0 (as desired)
return -tf.math.softplus(s), -tf.math.softplus(-s)
def _cdf(self, event):
prob = self._probs_parameter_no_checks()
return tf.where(event < 0, 0.0, tf.where(event < 1, 1.0 - prob, 1.0))
def _entropy(self):
probs0, probs1, log_probs0, log_probs1 = _probs_and_log_probs(
probs=self._probs, logits=self._logits, return_log_probs=True)
return -1. * (
tf.math.multiply_no_nan(log_probs0, probs0) +
tf.math.multiply_no_nan(log_probs1, probs1))
def _mean(self):
return self._probs_parameter_no_checks()
def _variance(self):
probs0, probs1 = _probs_and_log_probs(
probs=self._probs, logits=self._logits, return_log_probs=False)
return probs0 * probs1
def _mode(self):
"""Returns `1` if `prob > 0.5` and `0` otherwise."""
return tf.cast(self._probs_parameter_no_checks() > 0.5, self.dtype)
def logits_parameter(self, name=None):
"""Logits computed from non-`None` input arg (`probs` or `logits`)."""
with self._name_and_control_scope(name or 'logits_parameter'):
return self._logits_parameter_no_checks()
def _logits_parameter_no_checks(self):
if self._logits is None:
probs = tf.convert_to_tensor(self._probs)
return tf.math.log(probs) - tf.math.log1p(-probs)
return tensor_util.identity_as_tensor(self._logits)
def probs_parameter(self, name=None):
"""Probs computed from non-`None` input arg (`probs` or `logits`)."""
with self._name_and_control_scope(name or 'probs_parameter'):
return self._probs_parameter_no_checks()
def _probs_parameter_no_checks(self):
if self._logits is None:
return tensor_util.identity_as_tensor(self._probs)
return tf.math.sigmoid(self._logits)
def _default_event_space_bijector(self):
return
@classmethod
def _maximum_likelihood_parameters(cls, value):
return {'probs': tf.reduce_mean(value, axis=0)}
def _parameter_control_dependencies(self, is_init):
return maybe_assert_bernoulli_param_correctness(
is_init, self.validate_args, self._probs, self._logits)
def _sample_control_dependencies(self, x):
assertions = []
if not self.validate_args:
return assertions
assertions.extend(distribution_util.assert_nonnegative_integer_form(x))
assertions.append(
assert_util.assert_less_equal(
x, tf.ones([], dtype=x.dtype),
message='Sample must be less than or equal to `1`.'))
return assertions
def maybe_assert_bernoulli_param_correctness(
is_init, validate_args, probs, logits):
"""Return assertions for `Bernoulli`-type distributions."""
if is_init:
x, name = (probs, 'probs') if logits is None else (logits, 'logits')
if not dtype_util.is_floating(x.dtype):
raise TypeError(
'Argument `{}` must having floating type.'.format(name))
if not validate_args:
return []
assertions = []
if probs is not None:
if is_init != tensor_util.is_ref(probs):
probs = tf.convert_to_tensor(probs)
one = tf.constant(1., probs.dtype)
assertions += [
assert_util.assert_non_negative(
probs, message='probs has components less than 0.'),
assert_util.assert_less_equal(
probs, one, message='probs has components greater than 1.')
]
return assertions
def _probs_and_log_probs(probs=None,
logits=None,
return_probs=True,
return_log_probs=True):
"""Get parts/all of (1 - p, p, Log[1 - p], Log[p]); only one conversion."""
to_return = ()
# All use cases provide exactly one of probs or logits. If we were to choose,
# we prefer logits. Why? Because, for p very close to 1,
# 1 - p will equal 0 (in finite precision), whereas sigmoid(-logits) will give
# the correct (tiny) value.
assert (probs is None) != (logits is None), 'Provide exactly one.'
if logits is None:
p = tf.convert_to_tensor(probs)
if return_probs:
to_return += (1 - p, p)
if return_log_probs:
to_return += (tf.math.log1p(-p), tf.math.log(p))
return to_return
s = tf.convert_to_tensor(logits)
if return_probs:
to_return += (tf.math.sigmoid(-s), tf.math.sigmoid(s))
if return_log_probs:
to_return += (-tf.math.softplus(s), -tf.math.softplus(-s))
return to_return
@kullback_leibler.RegisterKL(Bernoulli, Bernoulli)
def _kl_bernoulli_bernoulli(a, b, name=None):
"""Calculate the batched KL divergence KL(a || b) with a and b Bernoulli.
Args:
a: instance of a Bernoulli distribution object.
b: instance of a Bernoulli distribution object.
name: Python `str` name to use for created operations.
Default value: `None` (i.e., `'kl_bernoulli_bernoulli'`).
Returns:
Batchwise KL(a || b)
"""
with tf.name_scope(name or 'kl_bernoulli_bernoulli'):
# KL[a || b] = Pa * Log[Pa / Pb] + (1 - Pa) * Log[(1 - Pa) / (1 - Pb)]
# This is defined iff (Pb = 0 ==> Pa = 0) AND (Pb = 1 ==> Pa = 1).
a_logits = a._logits_parameter_no_checks() # pylint:disable=protected-access
b_logits = b._logits_parameter_no_checks() # pylint:disable=protected-access
one_minus_pa, pa, log_one_minus_pa, log_pa = _probs_and_log_probs(
logits=a_logits)
log_one_minus_pb, log_pb = _probs_and_log_probs(logits=b_logits,
return_probs=False)
# Multiply each factor individually to avoid Inf - Inf.
return (
tf.math.multiply_no_nan(log_pa, pa) -
tf.math.multiply_no_nan(log_pb, pa) +
tf.math.multiply_no_nan(log_one_minus_pa, one_minus_pa) -
tf.math.multiply_no_nan(log_one_minus_pb, one_minus_pa)
)