-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathbinomial_test.py
496 lines (439 loc) · 20.2 KB
/
binomial_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from scipy import stats
import tensorflow.compat.v1 as tf1
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.distributions import binomial as binomial_lib
from tensorflow_probability.python.internal import implementation_selection
from tensorflow_probability.python.internal import test_util
from tensorflow_probability.python.math import gradient
@test_util.test_all_tf_execution_regimes
class BinomialTest(test_util.TestCase):
def setUp(self):
self._rng = np.random.RandomState(42)
super(BinomialTest, self).setUp()
def testAssertionsOneOfProbsAndLogits(self):
with self.assertRaisesRegex(
ValueError, 'Construct `Binomial` with `probs` or `logits`'):
self.evaluate(binomial_lib.Binomial(total_count=10))
with self.assertRaisesRegex(ValueError, 'but not both'):
self.evaluate(binomial_lib.Binomial(total_count=10, probs=0.5, logits=0.))
def testInvalidProbabilities(self):
invalid_probabilities = [1.01, 2.]
for p in invalid_probabilities:
with self.assertRaisesOpError('probs has components greater than 1'):
dist = binomial_lib.Binomial(
total_count=10, probs=p, validate_args=True)
self.evaluate(dist.probs_parameter())
invalid_probabilities = [-0.01, -3.]
for p in invalid_probabilities:
with self.assertRaisesOpError('x >= 0 did not hold'):
dist = binomial_lib.Binomial(
total_count=10, probs=p, validate_args=True)
self.evaluate(dist.probs_parameter())
def testSimpleShapes(self):
p = np.float32(np.random.beta(1, 1))
binom = binomial_lib.Binomial(total_count=1., probs=p, validate_args=True)
self.assertAllEqual([], self.evaluate(binom.event_shape_tensor()))
self.assertAllEqual([], self.evaluate(binom.batch_shape_tensor()))
self.assertEqual(tf.TensorShape([]), binom.event_shape)
self.assertEqual(tf.TensorShape([]), binom.batch_shape)
def testComplexShapes(self):
p = np.random.beta(1, 1, size=(3, 2)).astype(np.float32)
n = [[3., 2], [4, 5], [6, 7]]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
self.assertAllEqual([], self.evaluate(binom.event_shape_tensor()))
self.assertAllEqual([3, 2], self.evaluate(binom.batch_shape_tensor()))
self.assertEqual(tf.TensorShape([]), binom.event_shape)
self.assertEqual(tf.TensorShape([3, 2]), binom.batch_shape)
def testNProperty(self):
p = [[0.1, 0.2, 0.7], [0.2, 0.3, 0.5]]
n = [[3.], [4]]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
self.assertEqual((2, 1), binom.total_count.shape)
self.assertAllClose(n, self.evaluate(binom.total_count))
def testPProperty(self):
p = [[0.1, 0.2, 0.7]]
binom = binomial_lib.Binomial(total_count=3., probs=p, validate_args=True)
self.assertEqual((1, 3), binom.probs.shape)
self.assertEqual((1, 3), binom.logits_parameter().shape)
self.assertAllClose(p, self.evaluate(binom.probs))
def testLogitsProperty(self):
logits = [[0., 9., -0.5]]
binom = binomial_lib.Binomial(
total_count=3., logits=logits, validate_args=True)
self.assertEqual((1, 3), binom.probs_parameter().shape)
self.assertEqual((1, 3), binom.logits.shape)
self.assertAllClose(logits, self.evaluate(binom.logits))
def testPmfAndCdfNandCountsAgree(self):
p = [[0.1, 0.2, 0.7]]
n = [[5.]]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
self.evaluate(binom.prob([2., 3, 2]))
self.evaluate(binom.prob([3., 1, 2]))
self.evaluate(binom.cdf([2., 3, 2]))
self.evaluate(binom.cdf([3., 1, 2]))
with self.assertRaisesOpError('Condition x >= 0.*'):
self.evaluate(binom.prob([-1., 4, 2]))
with self.assertRaisesOpError('Condition x <= y.*'):
self.evaluate(binom.prob([7., 3, 0]))
with self.assertRaisesOpError('Condition x >= 0.*'):
self.evaluate(binom.cdf([-1., 4, 2]))
with self.assertRaisesOpError('Condition x <= y.*'):
self.evaluate(binom.cdf([7., 3, 0]))
def testPmfAndCdfNonIntegerCounts(self):
p = [[0.1, 0.2, 0.7]]
n = [[5.]]
# No errors with integer n.
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
self.evaluate(binom.prob([2., 3, 2]))
self.evaluate(binom.prob([3., 1, 2]))
self.evaluate(binom.cdf([2., 3, 2]))
self.evaluate(binom.cdf([3., 1, 2]))
placeholder = tf1.placeholder_with_default([1.0, 2.5, 1.5], shape=[3])
# Both equality and integer checking fail.
with self.assertRaisesOpError('cannot contain fractional components.'):
self.evaluate(binom.prob(placeholder))
with self.assertRaisesOpError('cannot contain fractional components.'):
self.evaluate(binom.cdf(placeholder))
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=False)
self.evaluate(binom.prob([1., 2., 3.]))
self.evaluate(binom.cdf([1., 2., 3.]))
# Non-integer arguments work.
self.evaluate(binom.prob([1.0, 2.5, 1.5]))
self.evaluate(binom.cdf([1.0, 2.5, 1.5]))
def testPmfAndCdfExtremeProbs(self):
n = 5.
p = [0., 1.]
counts = [[0.], [3.], [5.]]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
self.assertAllClose(self.evaluate(binom.prob(counts)),
[[1., 0.], [0., 0.], [0., 1.]])
self.assertAllClose(self.evaluate(binom.cdf(counts)),
[[1., 0.], [1., 0.], [1., 1.]])
def testPmfAndCdfBothZeroBatches(self):
# Both zero-batches. No broadcast
p = 0.5
counts = 1.
binom = binomial_lib.Binomial(total_count=1., probs=p, validate_args=True)
pmf = binom.prob(counts)
cdf = binom.cdf(counts)
self.assertAllClose(0.5, self.evaluate(pmf))
self.assertAllClose(stats.binom.cdf(counts, n=1, p=p), self.evaluate(cdf))
self.assertEqual((), pmf.shape)
self.assertEqual((), cdf.shape)
def testPmfAndCdfBothZeroBatchesNontrivialN(self):
# Both zero-batches. No broadcast
p = 0.1
counts = 3.
binom = binomial_lib.Binomial(total_count=5., probs=p, validate_args=True)
pmf = binom.prob(counts)
cdf = binom.cdf(counts)
self.assertAllClose(stats.binom.pmf(counts, n=5., p=p), self.evaluate(pmf))
self.assertAllClose(stats.binom.cdf(counts, n=5., p=p), self.evaluate(cdf))
self.assertEqual((), pmf.shape)
self.assertEqual((), cdf.shape)
def testPmfAndCdfPStretchedInBroadcastWhenSameRank(self):
p = [[0.1, 0.9]]
counts = [[1., 2.]]
binom = binomial_lib.Binomial(total_count=3., probs=p, validate_args=True)
pmf = binom.prob(counts)
cdf = binom.cdf(counts)
self.assertAllClose(stats.binom.pmf(counts, n=3., p=p), self.evaluate(pmf))
self.assertAllClose(stats.binom.cdf(counts, n=3., p=p), self.evaluate(cdf))
self.assertEqual((1, 2), pmf.shape)
self.assertEqual((1, 2), cdf.shape)
def testPmfAndCdfPStretchedInBroadcastWhenLowerRank(self):
p = [0.1, 0.4]
counts = [[1.], [0.]]
binom = binomial_lib.Binomial(total_count=1., probs=p, validate_args=True)
pmf = binom.prob(counts)
cdf = binom.cdf(counts)
self.assertAllClose([[0.1, 0.4], [0.9, 0.6]], self.evaluate(pmf))
self.assertAllClose([[1.0, 1.0], [0.9, 0.6]], self.evaluate(cdf))
self.assertEqual((2, 2), pmf.shape)
self.assertEqual((2, 2), cdf.shape)
def testCdfBeyondSupport(self):
p = [[0.1, 0.9]]
counts = [[-1., 4.]]
binom = binomial_lib.Binomial(total_count=3., probs=p, validate_args=False)
cdf = binom.cdf(counts)
self.assertAllEqual([[0., 1.]], self.evaluate(cdf))
def testBinomialMean(self):
n = 5.
p = [0.1, 0.2, 0.7]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
expected_means = stats.binom.mean(n, p)
self.assertEqual((3,), binom.mean().shape)
self.assertAllClose(expected_means, self.evaluate(binom.mean()))
def testBinomialVariance(self):
n = 5.
p = [0.1, 0.2, 0.7]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
expected_variances = stats.binom.var(n, p)
self.assertEqual((3,), binom.variance().shape)
self.assertAllClose(expected_variances, self.evaluate(binom.variance()))
def testBinomialMode(self):
n = 5.
p = [0.1, 0.2, 0.7]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
expected_modes = [0., 1, 4]
self.assertEqual((3,), binom.mode().shape)
self.assertAllClose(expected_modes, self.evaluate(binom.mode()))
def testBinomialModeExtremeValues(self):
n = [51., 52.]
p = 1.
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
expected_modes = n
self.assertEqual((2,), binom.mode().shape)
self.assertAllClose(expected_modes, self.evaluate(binom.mode()))
p = 0.
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
expected_modes = [0., 0.]
self.assertEqual((2,), binom.mode().shape)
self.assertAllClose(expected_modes, self.evaluate(binom.mode()))
def testBinomialMultipleMode(self):
n = 9.
p = [0.1, 0.2, 0.7]
binom = binomial_lib.Binomial(total_count=n, probs=p, validate_args=True)
# For the case where (n + 1) * p is an integer, the modes are:
# (n + 1) * p and (n + 1) * p - 1. In this case, we get back
# the larger of the two modes.
expected_modes = [1., 2, 7]
self.assertEqual((3,), binom.mode().shape)
self.assertAllClose(expected_modes, self.evaluate(binom.mode()))
def testSampleUnbiasedBroadcastingBatch(self):
probs = self._rng.rand(4, 3).astype(np.float64)
counts = np.float64([4, 11., 20.])
dist = binomial_lib.Binomial(
total_count=counts, probs=probs, validate_args=True)
n = int(1e5)
x = dist.sample(n, seed=test_util.test_seed())
sample_mean, sample_variance = tf.nn.moments(x=x, axes=0)
[
sample_mean_,
sample_variance_,
] = self.evaluate([
sample_mean,
sample_variance,
])
self.assertAllEqual([4, 3], sample_mean.shape)
self.assertAllClose(
stats.binom.mean(counts, probs), sample_mean_, atol=0., rtol=0.10)
self.assertAllEqual([4, 3], sample_variance.shape)
self.assertAllClose(
stats.binom.var(counts, probs), sample_variance_, atol=0., rtol=0.20)
def testSampleUnbiasedVectorBatch(self):
for counts in np.float32(5.), np.float32(50.):
probs = self._rng.rand(4).astype(np.float32)
dist = binomial_lib.Binomial(
total_count=counts, probs=probs, validate_args=True)
n = int(1e5)
x = dist.sample(n, seed=test_util.test_seed())
sample_mean, sample_variance = tf.nn.moments(x=x, axes=0)
[
sample_mean_,
sample_variance_,
] = self.evaluate([
sample_mean,
sample_variance,
])
self.assertAllEqual([4], sample_mean.shape)
# Pass f64 values to avoid errors in scipy.
self.assertAllClose(
stats.binom.mean(counts.astype(np.float64), probs.astype(np.float64)),
sample_mean_, atol=0., rtol=0.10)
self.assertAllEqual([4], sample_variance.shape)
self.assertAllClose(
stats.binom.var(counts.astype(np.float64), probs.astype(np.float64)),
sample_variance_, atol=0., rtol=0.20)
def testSampleExtremeValues(self):
total_count = tf.constant(17., dtype=tf.float32)
probs = tf.constant([0., 1.], dtype=tf.float32)
dist = binomial_lib.Binomial(
total_count=total_count, probs=probs, validate_args=True)
samples, expected_samples = self.evaluate(
(dist.sample(seed=test_util.test_seed()),
total_count * probs))
self.assertAllEqual(samples, expected_samples)
def testSampleWithLargeCountAndSmallProbs(self):
total_count = tf.constant(1e6, dtype=tf.float32)
probs = tf.constant(1e-6, dtype=tf.float32)
dist = binomial_lib.Binomial(
total_count=total_count, probs=probs, validate_args=True)
small_probs = self.evaluate(dist.prob([0., 1., 2.]))
# Approximate analytic probabilities for very small counts for this
# binomial:
# - p(0) = (1 - 1e-6)**1e6 \approx 1/e
# - p(1) = p(0) * 1e6 * 1e-6 * 1/(1 - 1e-6)
# \approx 1/e * 1/(1 - 1e-6) \approx 1/e
# - p(2) = p(0) * 1e6**2 * choose(2, 1e6) / (1 - 1e-6)**2
# \approx 1/e * 1e6 * 1/(1e6 - 1) * 1/2 * 1/(1 - 1e-6)**2
# \approx 1/(2*e)
expected_probs = [np.exp(-1.), np.exp(-1.), np.exp(-1.) / 2.]
self.assertAllClose(small_probs, expected_probs)
small_log_probs = self.evaluate(dist.log_prob([0., 1., 2.]))
expected_log_probs = [-1., -1., -1. - np.log(2)]
self.assertAllClose(small_log_probs, expected_log_probs, rtol=5e-6)
n = 1000
sample_avg = self.evaluate(
tf.reduce_mean(dist.sample(n, seed=test_util.test_seed())))
# `sample_avg` has mean 1 and variance ~1/n. So `sample_avg` should be
# within `4.9 / sqrt(n)` of 1 with probability `1 - 1e-6`.
self.assertAllClose(sample_avg, 1., atol=4.9/np.sqrt(n))
def testSampleWithZeroCountsAndNanSuccessProbability(self):
# With zero counts, should sample 0 successes even if success probability is
# nan; and should not interfere with the rest of the batch.
total_count = tf.constant([23., 0.], dtype=tf.float32)
probs = tf.constant([1., np.nan], dtype=tf.float32)
dist = binomial_lib.Binomial(
total_count=total_count, probs=probs, validate_args=False)
samples, expected_samples = self.evaluate(
(dist.sample(seed=test_util.test_seed()),
total_count))
self.assertAllEqual(samples, expected_samples)
def testSampleWithNonZeroCountsAndNanSuccessProbability(self):
# With non-zero counts, should forward the nan from the success probability,
# but should not interfere with the rest of the batch.
# Testing this case because it came up from us using Binomial as a
# subroutine in BetaBinomial (b/163433191).
total_count = tf.constant([23., 6.], dtype=tf.float32)
probs = tf.constant([1., np.nan], dtype=tf.float32)
expected_samples = [23., np.nan]
dist = binomial_lib.Binomial(
total_count=total_count, probs=probs, validate_args=False)
samples = self.evaluate(dist.sample(5, seed=test_util.test_seed()))
self.assertAllEqual(samples, [expected_samples] * 5)
def testSampleInBounds(self):
# Regression test for b/152660887.
# This number of samples suffices to make the test fail about 45 times out
# of 100 under --vary_seed (before applying the fix, that is).
num_samples = 1000000
total_count = tf.constant([1.], dtype=tf.float32)
probs = tf.constant([0.], dtype=tf.float32)
dist = binomial_lib.Binomial(
total_count=total_count, probs=probs, validate_args=True)
samples = self.evaluate(
dist.sample(num_samples, seed=test_util.test_seed()))
self.assertAllEqual(samples, tf.zeros_like(samples))
def testParamTensorFromLogits(self):
x = tf.constant([-1., 0.5, 1.])
d = binomial_lib.Binomial(total_count=1, logits=x, validate_args=True)
logit = lambda x: tf.math.log(x) - tf.math.log1p(-x)
self.assertAllClose(
*self.evaluate([logit(d.prob(1.)), d.logits_parameter()]),
atol=0, rtol=1e-4)
self.assertAllClose(
*self.evaluate([d.prob(1.), d.probs_parameter()]),
atol=0, rtol=1e-4)
def testParamTensorFromProbs(self):
x = tf.constant([0.1, 0.5, 0.4])
d = binomial_lib.Binomial(total_count=1, probs=x, validate_args=True)
logit = lambda x: tf.math.log(x) - tf.math.log1p(-x)
self.assertAllClose(
*self.evaluate([logit(d.prob(1.)), d.logits_parameter()]),
# Set atol because logit(0.5) == 0.
atol=3e-6, rtol=1e-4)
self.assertAllClose(
*self.evaluate([d.prob(1.), d.probs_parameter()]),
atol=0, rtol=1e-4)
@test_util.numpy_disable_gradient_test
@test_util.jax_disable_test_missing_functionality(
'No gradient for while loops in JAX backend.')
def testNotReparameterized(self):
def f(n, p):
b = binomial_lib.Binomial(n, p)
return b.sample(5, seed=test_util.test_seed())
_, [grad_n, grad_p] = gradient.value_and_gradient(f, [10., 0.5])
self.assertIsNone(grad_n)
self.assertIsNone(grad_p)
@test_util.test_all_tf_execution_regimes
class BinomialFromVariableTest(test_util.TestCase):
def testAssertionsTotalCount(self):
x = tf.Variable([-1.0, 4.0, 1.0])
d = binomial_lib.Binomial(
total_count=x, logits=[0.0, 0.0, 0.0], validate_args=True)
self.evaluate([v.initializer for v in d.variables])
with self.assertRaisesOpError('`total_count` must be non-negative.'):
self.evaluate(d.mean())
def testAssertionsTotalCountMutation(self):
x = tf.Variable([1.0, 4.0, 1.0])
d = binomial_lib.Binomial(
total_count=x, logits=[0.0, 0.0, 0.0], validate_args=True)
self.evaluate([v.initializer for v in d.variables])
self.evaluate(d.mean())
self.evaluate(x.assign(-x))
with self.assertRaisesOpError('`total_count` must be non-negative.'):
self.evaluate(d.mean())
def testAssertionsProbsMutation(self):
probs = tf.Variable([0.5])
d = binomial_lib.Binomial(total_count=10, probs=probs, validate_args=True)
self.evaluate([v.initializer for v in d.variables])
self.evaluate(d.probs_parameter())
self.evaluate(probs.assign([1.25]))
with self.assertRaisesOpError('probs has components greater than 1'):
self.evaluate(d.probs_parameter())
self.evaluate(probs.assign([-0.5]))
with self.assertRaisesOpError('x >= 0 did not hold'):
self.evaluate(d.probs_parameter())
self.evaluate(probs.assign([0.75]))
self.evaluate(d.probs_parameter())
@test_util.test_graph_and_eager_modes
class BinomialSamplingTest(test_util.TestCase):
@test_util.jax_disable_test_missing_functionality('tf stateless_binomial')
def testSampleCPU(self):
with tf.device('CPU'):
_, runtime = self.evaluate(
binomial_lib._random_binomial(
shape=tf.constant([], dtype=tf.int32),
counts=tf.constant(10.), probs=tf.constant(.5),
seed=test_util.test_seed()))
self.assertEqual(implementation_selection._RUNTIME_CPU, runtime)
def testSampleGPU(self):
# Debugging tip: --vmodule=implementation_selector=2,function_api_info=3
# helps debug errors like: Skipping optimization due to error while loading
# function libraries: Invalid argument: Functions
# '__inference__binomial_cpu_1184' and '__inference__binomial_noncpu_2305'
# both implement 'binomial_76a77701-978a-4299-ad23-ff0d5c7598cb' but their
# signatures do not match.
if not tf.test.is_gpu_available():
self.skipTest('no GPU')
with tf.device('GPU'):
_, runtime = self.evaluate(binomial_lib._random_binomial(
shape=tf.constant([], dtype=tf.int32),
counts=tf.constant(10.), probs=tf.constant(.5),
seed=test_util.test_seed()))
self.assertEqual(implementation_selection._RUNTIME_DEFAULT, runtime)
def testSampleXLA(self):
self.skip_if_no_xla()
if not tf.executing_eagerly(): return # jit_compile is eager-only.
probs = np.random.rand(4, 3).astype(np.float32)
counts = np.float32([4, 11., 20.])
dist = binomial_lib.Binomial(
total_count=counts, probs=probs, validate_args=True)
# Verify the compile succeeds going all the way through the distribution.
self.evaluate(
tf.function(lambda: dist.sample(5, seed=test_util.test_seed()),
jit_compile=True)())
# Also test the low-level sampler and verify the XLA-friendly variant.
_, runtime = self.evaluate(
tf.function(binomial_lib._random_binomial, jit_compile=True)(
shape=[],
counts=tf.constant(10.), probs=tf.constant(.5),
seed=test_util.test_seed()))
self.assertEqual(implementation_selection._RUNTIME_DEFAULT, runtime)
if __name__ == '__main__':
test_util.main()