-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathcauchy.py
269 lines (217 loc) · 9.41 KB
/
cauchy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The Cauchy distribution class."""
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import identity as identity_bijector
from tensorflow_probability.python.bijectors import softplus as softplus_bijector
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.distributions import kullback_leibler
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import prefer_static as ps
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import samplers
from tensorflow_probability.python.internal import tensor_util
__all__ = [
'Cauchy',
]
class Cauchy(distribution.AutoCompositeTensorDistribution):
"""The Cauchy distribution with location `loc` and scale `scale`.
#### Mathematical details
The probability density function (pdf) is,
```none
pdf(x; loc, scale) = 1 / (pi scale (1 + z**2))
z = (x - loc) / scale
```
where `loc` is the location, and `scale` is the scale.
The Cauchy distribution is a member of the [location-scale family](
https://en.wikipedia.org/wiki/Location-scale_family), i.e.
`Y ~ Cauchy(loc, scale)` is equivalent to,
```none
X ~ Cauchy(loc=0, scale=1)
Y = loc + scale * X
```
#### Examples
Examples of initialization of one or a batch of distributions.
```python
tfd = tfp.distributions
# Define a single scalar Cauchy distribution.
dist = tfd.Cauchy(loc=0., scale=3.)
# Evaluate the cdf at 1, returning a scalar.
dist.cdf(1.)
# Define a batch of two scalar valued Cauchy distributions.
dist = tfd.Cauchy(loc=[1, 2.], scale=[11, 22.])
# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
dist.prob([0, 1.5])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
# Arguments are broadcast when possible.
# Define a batch of two scalar valued Cauchy distributions.
# Both have median 1, but different scales.
dist = tfd.Cauchy(loc=1., scale=[11, 22.])
# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.
dist.prob(3.)
```
"""
def __init__(self,
loc,
scale,
validate_args=False,
allow_nan_stats=True,
name='Cauchy'):
"""Construct Cauchy distributions.
The parameters `loc` and `scale` must be shaped in a way that supports
broadcasting (e.g. `loc + scale` is a valid operation).
Args:
loc: Floating point tensor; the modes of the distribution(s).
scale: Floating point tensor; the half-widths of the distribution(s) at
their half-maximums. Must contain only positive values.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`,
statistics (e.g., mean, mode, variance) use the value '`NaN`' to
indicate the result is undefined. When `False`, an exception is raised
if one or more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
Raises:
TypeError: if `loc` and `scale` have different `dtype`.
"""
parameters = dict(locals())
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([loc, scale], tf.float32)
self._loc = tensor_util.convert_nonref_to_tensor(
loc, name='loc', dtype=dtype)
self._scale = tensor_util.convert_nonref_to_tensor(
scale, name='scale', dtype=dtype)
dtype_util.assert_same_float_dtype([self._loc, self._scale])
super(Cauchy, self).__init__(
dtype=self._scale.dtype,
reparameterization_type=reparameterization.FULLY_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
# pylint: disable=g-long-lambda
return dict(
loc=parameter_properties.ParameterProperties(),
scale=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=(
lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype)))))
# pylint: enable=g-long-lambda
@property
def loc(self):
"""Distribution parameter for the location."""
return self._loc
@property
def scale(self):
"""Distribution parameter for the scale."""
return self._scale
def _event_shape_tensor(self):
return tf.constant([], dtype=tf.int32)
def _event_shape(self):
return tf.TensorShape([])
def _sample_n(self, n, seed=None):
loc = tf.convert_to_tensor(self.loc)
scale = tf.convert_to_tensor(self.scale)
batch_shape = self._batch_shape_tensor(loc=loc, scale=scale)
shape = ps.concat([[n], batch_shape], 0)
probs = samplers.uniform(
shape=shape, minval=0., maxval=1., dtype=self.dtype, seed=seed)
return self._quantile(probs, loc=loc, scale=scale)
def _log_prob(self, x):
npdt = dtype_util.as_numpy_dtype(self.dtype)
scale = tf.convert_to_tensor(self.scale)
log_unnormalized_prob = -tf.math.log1p(tf.square(self._z(x, scale=scale)))
log_normalization = npdt(np.log(np.pi)) + tf.math.log(scale)
return log_unnormalized_prob - log_normalization
def _cdf(self, x):
return tf.atan(self._z(x)) / np.pi + 0.5
def _log_cdf(self, x):
return tf.math.log1p(2 / np.pi * tf.atan(self._z(x))) - np.log(2)
def _entropy(self):
h = np.log(4 * np.pi) + tf.math.log(self.scale)
return h * tf.ones_like(self.loc)
def _quantile(self, p, loc=None, scale=None):
loc = tf.convert_to_tensor(self.loc if loc is None else loc)
scale = tf.convert_to_tensor(self.scale if scale is None else scale)
return loc + scale * tf.tan(np.pi * (p - 0.5))
def _mode(self):
return self.loc * tf.ones_like(self.scale)
def _z(self, x, loc=None, scale=None):
"""Standardize input `x`."""
loc = tf.convert_to_tensor(self.loc if loc is None else loc)
scale = tf.convert_to_tensor(self.scale if scale is None else scale)
with tf.name_scope('standardize'):
return (x - loc) / scale
def _inv_z(self, z):
"""Reconstruct input `x` from a its normalized version."""
with tf.name_scope('reconstruct'):
return z * self.scale + self.loc
def _mean(self):
if self.allow_nan_stats:
return tf.fill(self.batch_shape_tensor(),
dtype_util.as_numpy_dtype(self.dtype)(np.nan))
else:
raise ValueError('`mean` is undefined for Cauchy distribution.')
def _stddev(self):
if self.allow_nan_stats:
return tf.fill(self.batch_shape_tensor(),
dtype_util.as_numpy_dtype(self.dtype)(np.nan))
else:
raise ValueError('`stddev` is undefined for Cauchy distribution.')
def _default_event_space_bijector(self):
# TODO(b/145620027) Finalize choice of bijector (consider one that
# transforms away the heavy tails).
return identity_bijector.Identity(validate_args=self.validate_args)
def _parameter_control_dependencies(self, is_init):
if not self.validate_args:
return []
assertions = []
if is_init != tensor_util.is_ref(self.scale):
assertions.append(assert_util.assert_positive(
self.scale, message='Argument `scale` must be positive.'))
return assertions
@kullback_leibler.RegisterKL(Cauchy, Cauchy)
def _kl_cauchy_cauchy(a, b, name=None):
"""Calculate the batched KL divergence KL(a || b) with a and b Cauchy.
Note that this KL divergence is symmetric in its arguments.
Args:
a: instance of a Cauchy distribution object.
b: instance of a Cauchy distribution object.
name: Name to use for created operations.
Default value: `None` (i.e., `'kl_cauchy_cauchy'`).
Returns:
kl_div: Batchwise KL(a || b)
#### References
[1] Frederic Chyzak and Frank Nielsen. A closed-form formula for the
Kullback-Leibler divergence between Cauchy distributions.
https://arxiv.org/abs/1905.10965
"""
with tf.name_scope(name or 'kl_cauchy_cauchy'):
a_scale = tf.convert_to_tensor(a.scale)
b_scale = tf.convert_to_tensor(b.scale)
b_loc = tf.convert_to_tensor(b.loc)
scale_sum_square = tf.math.square(a_scale + b_scale)
loc_diff_square = tf.math.squared_difference(a.loc, b_loc)
return (tf.math.log(scale_sum_square + loc_diff_square) -
np.log(4.) - tf.math.log(a_scale) - tf.math.log(b_scale))