-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathchi2.py
249 lines (209 loc) · 9.33 KB
/
chi2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The Chi2 distribution class."""
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import softplus as softplus_bijector
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.distributions import gamma as gamma_lib
from tensorflow_probability.python.distributions import kullback_leibler
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import distribution_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import tensor_util
from tensorflow_probability.python.math import special
__all__ = [
'Chi2',
]
class Chi2(distribution.AutoCompositeTensorDistribution):
"""Chi2 distribution.
The Chi2 distribution is defined over positive real numbers using a degrees of
freedom ('df') parameter.
#### Mathematical Details
The probability density function (pdf) is,
```none
pdf(x; df, x > 0) = x**(0.5 df - 1) exp(-0.5 x) / Z
Z = 2**(0.5 df) Gamma(0.5 df)
```
where:
* `df` denotes the degrees of freedom,
* `Z` is the normalization constant, and,
* `Gamma` is the [gamma function](
https://en.wikipedia.org/wiki/Gamma_function).
The Chi2 distribution is a special case of the Gamma distribution -- i.e.,
`Chi2(df)` represents the same distribution as
`Gamma(concentration=0.5 * df, rate=0.5)`.
"""
def __init__(self,
df,
validate_args=False,
allow_nan_stats=True,
name='Chi2'):
"""Construct Chi2 distributions with parameter `df`.
Args:
df: Floating point tensor, the degrees of freedom of the
distribution(s). `df` must contain only positive values.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value '`NaN`' to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
"""
parameters = dict(locals())
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([df], dtype_hint=tf.float32)
self._df = tensor_util.convert_nonref_to_tensor(
df, name='df', dtype=dtype)
super(Chi2, self).__init__(
dtype=dtype,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
reparameterization_type=reparameterization.FULLY_REPARAMETERIZED,
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
# pylint: disable=g-long-lambda
return dict(
df=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=(
lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype)))))
# pylint: enable=g-long-lambda
@property
def df(self):
return self._df
def _event_shape_tensor(self):
return tf.constant([], dtype=tf.int32)
def _event_shape(self):
return tf.TensorShape([])
@distribution_util.AppendDocstring(
"""Note: See `tf.random.gamma` docstring for sampling details and
caveats.""")
def _sample_n(self, n, seed=None):
return gamma_lib.random_gamma(
shape=[n],
concentration=0.5 * self.df,
rate=tf.convert_to_tensor(0.5, dtype=self.dtype),
seed=seed)
def _log_prob(self, x):
concentration = 0.5 * self.df
rate = tf.convert_to_tensor(0.5, dtype=self.dtype)
log_unnormalized_prob = tf.math.xlogy(concentration - 1., x) - rate * x
log_normalization = (tf.math.lgamma(concentration) -
concentration * tf.math.log(rate))
return log_unnormalized_prob - log_normalization
def _cdf(self, x):
return tf.math.igamma(0.5 * self.df, 0.5 * x)
def _quantile(self, p):
return 2. * special.igammainv(0.5 * self.df, p)
def _entropy(self):
concentration = 0.5 * self.df
rate = tf.convert_to_tensor(0.5, dtype=self.dtype)
return (concentration - tf.math.log(rate) +
tf.math.lgamma(concentration) +
((1. - concentration) * tf.math.digamma(concentration)))
def _mean(self):
return tf.identity(self.df)
def _variance(self):
return 2. * self.df
@distribution_util.AppendDocstring(
"""The mode of a Chi2 distribution is `df - 2` when `df > 2`, and `NaN`
otherwise. If `self.allow_nan_stats` is `False`, an exception will be
raised rather than returning `NaN`.""")
def _mode(self):
df = tf.convert_to_tensor(self.df)
mode = df - 2.
if self.allow_nan_stats:
assertions = []
else:
assertions = [assert_util.assert_less(
2. * tf.ones([], self.dtype), df,
message='Mode not defined when df <= 2.')]
with tf.control_dependencies(assertions):
return tf.where(
df > 2.,
mode,
dtype_util.as_numpy_dtype(self.dtype)(np.nan))
def _default_event_space_bijector(self):
return softplus_bijector.Softplus(validate_args=self.validate_args)
def _sample_control_dependencies(self, x):
assertions = []
if not self.validate_args:
return assertions
assertions.append(assert_util.assert_non_negative(
x, message='Sample must be non-negative.'))
return assertions
def _parameter_control_dependencies(self, is_init):
if not self.validate_args:
return []
assertions = []
if is_init != tensor_util.is_ref(self.df):
assertions.append(assert_util.assert_positive(
self.df, message='Argument `df` must be positive.'))
return assertions
@kullback_leibler.RegisterKL(Chi2, Chi2)
def _kl_chi2_chi2(c0, c1, name=None):
"""Calculate the batched KL divergence KL(c0 || c1) with c0 and c1 Chi2."""
return _kl_gamma_gamma(concentration0=0.5 * c0.df, rate0=0.5,
concentration1=0.5 * c1.df, rate1=0.5,
name=name or 'kl_chi2_chi2')
@kullback_leibler.RegisterKL(Chi2, gamma_lib.Gamma)
def _kl_chi2_gamma(c0, g1, name=None):
"""Calculate batched KL divergence KL(c0 || g1) with c0 Chi2 and g1 Gamma."""
return _kl_gamma_gamma(concentration0=0.5 * c0.df, rate0=0.5,
concentration1=g1.concentration, rate1=g1.rate,
name=name or 'kl_chi2_gamma')
@kullback_leibler.RegisterKL(gamma_lib.Gamma, Chi2)
def _kl_gamma_chi2(g0, c1, name=None):
"""Calculate batched KL divergence KL(g0 || c1) with g0 Gamma and c1 Chi2."""
return _kl_gamma_gamma(concentration0=g0.concentration, rate0=g0.rate,
concentration1=0.5 * c1.df, rate1=0.5,
name=name or 'kl_gamma_chi2')
def _kl_gamma_gamma(concentration0, rate0, concentration1, rate1, name=None):
"""Calculate batched KL divergence KL(g0 || g1) with given Gamma parameters.
Args:
concentration0: Concentration of first Gamma distribution (g0).
rate0: Rate of first Gamma distirbution (g0).
concentration1: Concentration of second Gamma distribution (g1).
rate1: Rate of second Gamma distirbution (g1).
name: Python `str` name to use for created operations.
Default value: `None` (i.e., `'kl_gamma_gamma'`).
Returns:
kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
"""
with tf.name_scope(name or 'kl_gamma_gamma'):
# Result from:
# http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
# For derivation see:
# http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long
dtype = dtype_util.common_dtype(
[concentration0, rate0, concentration1, rate1], dtype_hint=tf.float32)
g0_concentration = tf.convert_to_tensor(concentration0, dtype=dtype)
g0_rate = tf.convert_to_tensor(rate0, dtype=dtype)
g1_concentration = tf.convert_to_tensor(concentration1, dtype=dtype)
g1_rate = tf.convert_to_tensor(rate1, dtype=dtype)
return (((g0_concentration - g1_concentration) *
tf.math.digamma(g0_concentration)) +
tf.math.lgamma(g1_concentration) -
tf.math.lgamma(g0_concentration) +
g1_concentration * tf.math.log(g0_rate) -
g1_concentration * tf.math.log(g1_rate) + g0_concentration *
(g1_rate / g0_rate - 1.))