-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathgev.py
272 lines (221 loc) · 10.6 KB
/
gev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright 2020 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The GeneralizedExtremeValue distribution class."""
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import gev_cdf as gev_cdf_bijector
from tensorflow_probability.python.bijectors import invert as invert_bijector
from tensorflow_probability.python.bijectors import softplus as softplus_bijector
from tensorflow_probability.python.distributions import transformed_distribution
from tensorflow_probability.python.distributions import uniform
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import prefer_static as ps
from tensorflow_probability.python.internal import tensor_util
class GeneralizedExtremeValue(transformed_distribution.TransformedDistribution):
"""The scalar GeneralizedExtremeValue distribution.
This distribution is a common choice for modeling the maximum value of a
suitably normalized sequence of random variables. This distribution is closely
related to Gumbel and Weibull distributions, with Gumbel in particular being a
special case of this distribution with `concentration = 0`.
#### Mathematical details
The probability density function (pdf) of this distribution is,
```none
pdf(x; loc, scale, conc) = t(x; loc, scale, conc) ** (1 + conc) * exp(
-t(x; loc, scale, conc) ) / scale
where t(x) =
* (1 + conc * (x - loc) / scale) ) ** (-1 / conc) when conc != 0;
* exp(-(x - loc) / scale) when conc = 0.
```
where `concentration = conc`.
The cumulative density function of this distribution is,
```cdf(x; mu, sigma) = exp(-t(x))```
The generalized extreme value distribution is a member of the
[location-scale family](https://en.wikipedia.org/wiki/Location-scale_family),
i.e., it can be constructed as,
```none
X ~ GeneralizedExtremeValue(loc=0, scale=1, concentration=conc)
Y = loc + scale * X
```
#### Examples
Examples of initialization of one or a batch of distributions.
```python
tfd = tfp.distributions
# Define a single scalar generalized extreme values distribution.
dist = tfd.GeneralizedExtremeValue(loc=0., scale=3., concentration=0.9)
# Evaluate the cdf at 1, returning a scalar.
dist.cdf(1.)
# Define a batch of two scalar valued generalized extreme values.
# The first has loc 1 and scale 11, the second 2 and 22.
dist = tfd.GeneralizedExtremeValue(loc=[1, 2.], scale=[11, 22.])
# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
dist.prob([0, 1.5])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
```
Arguments are broadcast when possible.
```python
# Define a batch of two scalar valued GEV distributions.
# Both have location 1, but different concentrations.
dist = tfd.GeneralizedExtremeValue(loc=1., scale=1, concentration=[0, 0.9])
# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.
dist.prob(3.0)
```
"""
def __init__(self,
loc,
scale,
concentration,
validate_args=False,
allow_nan_stats=True,
name='GeneralizedExtremeValue'):
"""Construct generalized extreme value distribution.
The parameters `loc`, `scale`, and `concentration` must be shaped in a way
that supports broadcasting (e.g. `loc + scale` + `concentration` is valid).
Args:
loc: Floating point tensor, the location parameter of the distribution(s).
scale: Floating point tensor, the scales of the distribution(s).
scale must contain only positive values.
concentration: Floating point tensor, the concentration of
the distribution(s).
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
Default value: `False`.
allow_nan_stats: Python `bool`, default `True`. When `True`,
statistics (e.g., mean, mode, variance) use the value `NaN` to
indicate the result is undefined. When `False`, an exception is raised
if one or more of the statistic's batch members are undefined.
Default value: `True`.
name: Python `str` name prefixed to Ops created by this class.
Default value: `'GeneralizedExtremeValue'`.
Raises:
TypeError: if loc and scale are different dtypes.
"""
parameters = dict(locals())
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([loc, scale, concentration],
dtype_hint=tf.float32)
loc = tensor_util.convert_nonref_to_tensor(
loc, name='loc', dtype=dtype)
scale = tensor_util.convert_nonref_to_tensor(
scale, name='scale', dtype=dtype)
concentration = tensor_util.convert_nonref_to_tensor(
concentration, name='concentration', dtype=dtype)
dtype_util.assert_same_float_dtype([loc, scale, concentration])
# Positive scale is asserted by the incorporated GEV bijector.
self._gev_bijector = gev_cdf_bijector.GeneralizedExtremeValueCDF(
loc=loc, scale=scale, concentration=concentration,
validate_args=validate_args)
# Because the uniform sampler generates samples in `[0, 1)` this would
# cause samples to lie in `(inf, -inf]` instead of `(inf, -inf)`. To fix
# this, we use `np.finfo(dtype_util.as_numpy_dtype(self.dtype).tiny`
# because it is the smallest, positive, 'normal' number.
super(GeneralizedExtremeValue, self).__init__(
distribution=uniform.Uniform(
low=np.finfo(dtype_util.as_numpy_dtype(dtype)).tiny,
high=tf.ones([], dtype=dtype),
allow_nan_stats=allow_nan_stats),
# The GEV bijector encodes the CDF function as the forward,
# and hence needs to be inverted.
bijector=invert_bijector.Invert(
self._gev_bijector, validate_args=validate_args),
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
# pylint: disable=g-long-lambda
return dict(
loc=parameter_properties.ParameterProperties(),
scale=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=(
lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype)))),
concentration=parameter_properties.ParameterProperties())
# pylint: enable=g-long-lambda
@property
def loc(self):
"""Distribution parameter for the location."""
return self._gev_bijector.loc
@property
def scale(self):
"""Distribution parameter for scale."""
return self._gev_bijector.scale
@property
def concentration(self):
"""Distribution parameter for shape."""
return self._gev_bijector.concentration
experimental_is_sharded = False
def _entropy(self):
scale = tf.broadcast_to(self.scale,
ps.broadcast_shape(ps.shape(self.scale),
ps.shape(self.loc)))
euler_gamma = tf.constant(np.euler_gamma, self.dtype)
return 1. + tf.math.log(scale) + euler_gamma * (1. + self.concentration)
def _log_prob(self, x):
with tf.control_dependencies(self._gev_bijector._maybe_assert_valid_x(x)): # pylint: disable=protected-access
scale = tf.convert_to_tensor(self.scale)
z = (x - self.loc) / scale
conc = tf.convert_to_tensor(self.concentration)
equal_zero = tf.equal(conc, 0.)
safe_conc = tf.where(equal_zero, tf.ones_like(conc), conc)
log_t = tf.where(equal_zero, -z,
-tf.math.log1p(z * safe_conc) / safe_conc)
result = (conc + 1) * log_t - tf.exp(log_t) - tf.math.log(scale)
return tf.where(z * safe_conc <= -1.0,
tf.constant(-np.inf, dtype=result.dtype),
result)
def _mean(self):
conc = tf.convert_to_tensor(self.concentration)
equal_zero = tf.equal(conc, 0.)
less_than_one = tf.less(conc, 1.)
safe_conc = tf.where(equal_zero, tf.ones_like(conc), conc)
mean_zero = tf.fill(tf.shape(conc), tf.constant(np.euler_gamma, self.dtype))
mean_fin = tf.math.expm1(tf.math.lgamma(1. - safe_conc)) / safe_conc
mean_inf = tf.fill(tf.shape(conc), tf.constant(np.inf, self.dtype))
mean_z = tf.where(equal_zero,
mean_zero,
tf.where(less_than_one,
mean_fin,
mean_inf))
return self.loc + self.scale * mean_z
def _stddev(self):
conc = tf.convert_to_tensor(self.concentration)
equal_zero = tf.equal(conc, 0.)
less_than_half = tf.less(conc, 0.5)
g1_square = tf.exp(tf.math.lgamma(1. - conc)) ** 2
g2 = tf.exp(tf.math.lgamma(1. - 2. * conc))
safe_conc = tf.where(equal_zero, tf.ones([], self.dtype), conc)
std_z = tf.where(equal_zero,
tf.fill(tf.shape(conc),
tf.constant(np.pi / np.sqrt(6), self.dtype)),
tf.where(less_than_half,
tf.math.sqrt(g2 - g1_square) / tf.abs(safe_conc),
tf.fill(tf.shape(conc),
tf.constant(np.inf, self.dtype)))
)
return self.scale * tf.ones_like(self.loc) * std_z
def _mode(self):
conc = tf.convert_to_tensor(self.concentration)
equal_zero = tf.equal(conc, 0.)
safe_conc = tf.where(equal_zero, tf.ones_like(conc), conc)
mode_z = tf.where(equal_zero,
tf.zeros_like(conc),
tf.math.expm1(-conc * tf.math.log1p(conc)) / safe_conc)
return self.loc + self.scale * mode_z
def _parameter_control_dependencies(self, is_init):
return self._gev_bijector._parameter_control_dependencies(is_init) # pylint: disable=protected-access