-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathgumbel.py
236 lines (192 loc) · 8.7 KB
/
gumbel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The Gumbel distribution class."""
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import gumbel_cdf as gumbel_cdf_bijector
from tensorflow_probability.python.bijectors import identity as identity_bijector
from tensorflow_probability.python.bijectors import invert as invert_bijector
from tensorflow_probability.python.bijectors import softplus as softplus_bijector
from tensorflow_probability.python.distributions import kullback_leibler
from tensorflow_probability.python.distributions import transformed_distribution
from tensorflow_probability.python.distributions import uniform
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import tensor_util
class Gumbel(transformed_distribution.TransformedDistribution):
"""The scalar Gumbel distribution with location `loc` and `scale` parameters.
#### Mathematical details
The probability density function (pdf) of this distribution is,
```none
pdf(x; mu, sigma) = exp(-(x - mu) / sigma - exp(-(x - mu) / sigma)) / sigma
```
where `loc = mu` and `scale = sigma`.
The cumulative density function of this distribution is,
```none
cdf(x; mu, sigma) = exp(-exp(-(x - mu) / sigma))
```
The Gumbel distribution is a member of the [location-scale family](
https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
constructed as,
```none
X ~ Gumbel(loc=0, scale=1)
Y = loc + scale * X
```
#### Examples
Examples of initialization of one or a batch of distributions.
```python
tfd = tfp.distributions
# Define a single scalar Gumbel distribution.
dist = tfd.Gumbel(loc=0., scale=3.)
# Evaluate the cdf at 1, returning a scalar.
dist.cdf(1.)
# Define a batch of two scalar valued Gumbels.
# The first has mean 1 and scale 11, the second 2 and 22.
dist = tfd.Gumbel(loc=[1, 2.], scale=[11, 22.])
# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
dist.prob([0, 1.5])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
```
Arguments are broadcast when possible.
```python
# Define a batch of two scalar valued Logistics.
# Both have mean 1, but different scales.
dist = tfd.Gumbel(loc=1., scale=[11, 22.])
# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.
dist.prob(3.0)
```
"""
def __init__(self,
loc,
scale,
validate_args=False,
allow_nan_stats=True,
name='Gumbel'):
"""Construct Gumbel distributions with location and scale `loc` and `scale`.
The parameters `loc` and `scale` must be shaped in a way that supports
broadcasting (e.g. `loc + scale` is a valid operation).
Args:
loc: Floating point tensor, the means of the distribution(s).
scale: Floating point tensor, the scales of the distribution(s).
scale must contain only positive values.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
Default value: `False`.
allow_nan_stats: Python `bool`, default `True`. When `True`,
statistics (e.g., mean, mode, variance) use the value `NaN` to
indicate the result is undefined. When `False`, an exception is raised
if one or more of the statistic's batch members are undefined.
Default value: `True`.
name: Python `str` name prefixed to Ops created by this class.
Default value: `'Gumbel'`.
Raises:
TypeError: if loc and scale are different dtypes.
"""
parameters = dict(locals())
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([loc, scale], dtype_hint=tf.float32)
loc = tensor_util.convert_nonref_to_tensor(
loc, name='loc', dtype=dtype)
scale = tensor_util.convert_nonref_to_tensor(
scale, name='scale', dtype=dtype)
dtype_util.assert_same_float_dtype([loc, scale])
# Positive scale is asserted by the incorporated Gumbel bijector.
self._gumbel_bijector = gumbel_cdf_bijector.GumbelCDF(
loc=loc, scale=scale, validate_args=validate_args)
# Because the uniform sampler generates samples in `[0, 1)` this would
# cause samples to lie in `(inf, -inf]` instead of `(inf, -inf)`. To fix
# this, we use `np.finfo(dtype_util.as_numpy_dtype(self.dtype).tiny`
# because it is the smallest, positive, 'normal' number.
super(Gumbel, self).__init__(
distribution=uniform.Uniform(
low=np.finfo(dtype_util.as_numpy_dtype(dtype)).tiny,
high=tf.ones([], dtype=dtype),
allow_nan_stats=allow_nan_stats),
# The Gumbel bijector encodes the CDF function as the forward,
# and hence needs to be inverted.
bijector=invert_bijector.Invert(
self._gumbel_bijector, validate_args=validate_args),
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
# pylint: disable=g-long-lambda
return dict(
loc=parameter_properties.ParameterProperties(),
scale=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=(
lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype)))))
# pylint: enable=g-long-lambda
@property
def loc(self):
"""Distribution parameter for the location."""
return self._gumbel_bijector.loc
@property
def scale(self):
"""Distribution parameter for scale."""
return self._gumbel_bijector.scale
experimental_is_sharded = False
def _entropy(self):
# Use broadcasting rules to calculate the full broadcast sigma.
scale = self.scale * tf.ones_like(self.loc)
return 1. + tf.math.log(scale) + np.euler_gamma
def _log_prob(self, x):
scale = tf.convert_to_tensor(self.scale)
z = (x - self.loc) / scale
return -(z + tf.exp(-z)) - tf.math.log(scale)
def _mean(self):
return self.loc + self.scale * np.euler_gamma
def _stddev(self):
return self.scale * tf.ones_like(self.loc) * np.pi / np.sqrt(6)
def _mode(self):
return self.loc * tf.ones_like(self.scale)
def _default_event_space_bijector(self):
# TODO(b/145620027) Finalize choice of bijector. Consider switching to
# Chain([Softplus(), Log()]) to lighten the doubly-exponential right tail.
return identity_bijector.Identity(validate_args=self.validate_args)
def _parameter_control_dependencies(self, is_init):
return self._gumbel_bijector._parameter_control_dependencies(is_init) # pylint: disable=protected-access
@kullback_leibler.RegisterKL(Gumbel, Gumbel)
def _kl_gumbel_gumbel(a, b, name=None):
"""Calculate the batched KL divergence KL(a || b) with a and b Gumbel.
Args:
a: instance of a Gumbel distribution object.
b: instance of a Gumbel distribution object.
name: (optional) Name to use for created operations.
default is 'kl_gumbel_gumbel'.
Returns:
Batchwise KL(a || b)
"""
with tf.name_scope(name or 'kl_gumbel_gumbel'):
# Consistent with
# http://www.mast.queensu.ca/~communications/Papers/gil-msc11.pdf, page 64
# The paper uses beta to refer to scale and mu to refer to loc.
# There is actually an error in the solution as printed; this is based on
# the second-to-last step of the derivation. The value as printed would be
# off by (a.loc - b.loc) / b.scale.
a_loc = tf.convert_to_tensor(a.loc)
b_loc = tf.convert_to_tensor(b.loc)
a_scale = tf.convert_to_tensor(a.scale)
b_scale = tf.convert_to_tensor(b.scale)
return (tf.math.log(b_scale) - tf.math.log(a_scale) + np.euler_gamma *
(a_scale / b_scale - 1.) +
tf.math.expm1((b_loc - a_loc) / b_scale +
tf.math.lgamma(a_scale / b_scale + 1.)) +
(a_loc - b_loc) / b_scale)