-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathconfig_utils.py
71 lines (60 loc) · 2.17 KB
/
config_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Config utils."""
import os
import tensorflow.compat.v1 as tf
from hyperparameters import params_dict
_PARSERS = [
'classification_parser',
'retinanet_parser',
'maskrcnn_parser',
'segmentation_parser',
'shapemask_parser',
]
_BACKBONES = [
'resnet',
'spinenet',
'spinenet_mbconv',
]
_MULTILEVEL_FEATURES = [
'fpn',
'nasfpn',
]
def filter_unused_blocks(params):
"""Filters unused architecture params blocks."""
filtered_params = params_dict.ParamsDict(params)
if 'parser' in params.architecture.as_dict().keys():
for parser in _PARSERS:
if (parser in params.as_dict().keys() and
parser != params.architecture.parser):
delattr(filtered_params, parser)
if 'backbone' in params.architecture.as_dict().keys():
for backbone in _BACKBONES:
if (backbone in params.as_dict().keys() and
backbone != params.architecture.backbone):
delattr(filtered_params, backbone)
if 'multilevel_features' in params.architecture.as_dict().keys():
for features in _MULTILEVEL_FEATURES:
if (features in params.as_dict().keys() and
features != params.architecture.multilevel_features):
delattr(filtered_params, features)
return filtered_params
def save_config(params, model_dir):
if model_dir:
params = filter_unused_blocks(params)
if not tf.gfile.Exists(model_dir):
tf.gfile.MakeDirs(model_dir)
params_dict.save_params_dict_to_yaml(
params, os.path.join(model_dir, 'params.yaml'))