-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathinput_utils.py
535 lines (449 loc) · 20.8 KB
/
input_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility functions for input processing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
from six.moves import range
import tensorflow.compat.v1 as tf
from utils import box_utils
from utils.object_detection import preprocessor
CENTER_CROP_FRACTION = 0.875
def clip_or_pad_to_fixed_size(input_tensor, size, constant_values=0):
"""Pads data to a fixed length at the first dimension.
Args:
input_tensor: `Tensor` with any dimension.
size: `int` number for the first dimension of output Tensor.
constant_values: `int` value assigned to the paddings.
Returns:
`Tensor` with the first dimension padded to `size`.
"""
input_shape = input_tensor.get_shape().as_list()
padding_shape = []
# Computes the padding length on the first dimension, clip input tensor if it
# is longer than `size`.
input_length = tf.shape(input_tensor)[0]
input_length = tf.clip_by_value(input_length, 0, size)
input_tensor = input_tensor[:input_length]
padding_length = tf.maximum(0, size - input_length)
padding_shape.append(padding_length)
# Copies shapes of the rest of input shape dimensions.
for i in range(1, len(input_shape)):
padding_shape.append(tf.shape(input_tensor)[i])
# Pads input tensor to the fixed first dimension.
paddings = tf.cast(constant_values * tf.ones(padding_shape),
input_tensor.dtype)
padded_tensor = tf.concat([input_tensor, paddings], axis=0)
output_shape = input_shape
output_shape[0] = size
padded_tensor.set_shape(output_shape)
return padded_tensor
def normalize_image_np(image,
offset=(0.485, 0.456, 0.406),
scale=(0.229, 0.224, 0.225)):
"""Normalizes the image to zero mean and unit variance."""
normalized_image = image.astype(np.float32)
normalized_image /= 255.0
normalized_image = (normalized_image - offset) / scale
return normalized_image
def normalize_image(image,
offset=(0.485, 0.456, 0.406),
scale=(0.229, 0.224, 0.225)):
"""Normalizes the image to zero mean and unit variance."""
with tf.name_scope('normalize_image'):
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
offset = tf.constant(offset)
offset = tf.expand_dims(offset, axis=0)
offset = tf.expand_dims(offset, axis=0)
image -= offset
scale = tf.constant(scale)
scale = tf.expand_dims(scale, axis=0)
scale = tf.expand_dims(scale, axis=0)
image /= scale
return image
def compute_padded_size(desired_size, stride):
"""Compute the padded size given the desired size and the stride.
The padded size will be the smallest rectangle, such that each dimension is
the smallest multiple of the stride which is larger than the desired
dimension. For example, if desired_size = (100, 200) and stride = 32,
the output padded_size = (128, 224).
Args:
desired_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the target output image size.
stride: an integer, the stride of the backbone network.
Returns:
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size.
"""
if isinstance(desired_size, list) or isinstance(desired_size, tuple):
padded_size = [int(math.ceil(d * 1.0 / stride) * stride)
for d in desired_size]
else:
padded_size = tf.cast(
tf.math.ceil(
tf.cast(desired_size, dtype=tf.float32) / stride) * stride,
tf.int32)
return padded_size
def resize_and_crop_image(image,
desired_size,
padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
seed=1,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes the input image to output size (RetinaNet style).
Resize and pad images given the desired output size of the image and
stride size.
Here are the preprocessing steps.
1. For a given image, keep its aspect ratio and rescale the image to make it
the largest rectangle to be bounded by the rectangle specified by the
`desired_size`.
2. Pad the rescaled image to the padded_size.
Args:
image: a `Tensor` of shape [height, width, 3] representing an image.
desired_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the desired actual output image size.
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size. Padding will be applied
after scaling the image to the desired_size.
aug_scale_min: a `float` with range between [0, 1.0] representing minimum
random scale applied to desired_size for training scale jittering.
aug_scale_max: a `float` with range between [1.0, inf] representing maximum
random scale applied to desired_size for training scale jittering.
seed: seed for random scale jittering.
method: function to resize input image to scaled image.
Returns:
output_image: `Tensor` of shape [height, width, 3] where [height, width]
equals to `output_size`.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [desired_height, desired_width],
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
desired_width] is the actual scaled image size, and [y_scale, x_scale] is
the scaling factor, which is the ratio of
scaled dimension / original dimension.
"""
with tf.name_scope('resize_and_crop_image'):
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0)
if random_jittering:
random_scale = tf.random_uniform(
[], aug_scale_min, aug_scale_max, seed=seed)
scaled_size = tf.round(random_scale * desired_size)
else:
scaled_size = desired_size
scale = tf.minimum(
scaled_size[0] / image_size[0], scaled_size[1] / image_size[1])
scaled_size = tf.round(image_size * scale)
# Computes 2D image_scale.
image_scale = scaled_size / image_size
# Selects non-zero random offset (x, y) if scaled image is larger than
# desired_size.
if random_jittering:
max_offset = scaled_size - desired_size
max_offset = tf.where(tf.less(max_offset, 0),
tf.zeros_like(max_offset),
max_offset)
offset = max_offset * tf.random_uniform([2,], 0, 1, seed=seed)
offset = tf.cast(offset, tf.int32)
else:
offset = tf.zeros((2,), tf.int32)
scaled_image = tf.image.resize_images(
image, tf.cast(scaled_size, tf.int32), method=method)
if random_jittering:
scaled_image = scaled_image[
offset[0]:offset[0] + desired_size[0],
offset[1]:offset[1] + desired_size[1], :]
output_image = tf.image.pad_to_bounding_box(
scaled_image, 0, 0, padded_size[0], padded_size[1])
image_info = tf.stack([
image_size,
tf.constant(desired_size, dtype=tf.float32),
image_scale,
tf.cast(offset, tf.float32)])
return output_image, image_info
def resize_and_crop_image_v2(image,
short_side,
long_side,
padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
seed=1,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes the input image to output size (Faster R-CNN style).
Resize and pad images given the specified short / long side length and the
stride size.
Here are the preprocessing steps.
1. For a given image, keep its aspect ratio and first try to rescale the short
side of the original image to `short_side`.
2. If the scaled image after 1 has a long side that exceeds `long_side`, keep
the aspect ratio and rescal the long side of the image to `long_side`.
2. Pad the rescaled image to the padded_size.
Args:
image: a `Tensor` of shape [height, width, 3] representing an image.
short_side: a scalar `Tensor` or `int` representing the desired short side
to be rescaled to.
long_side: a scalar `Tensor` or `int` representing the desired long side to
be rescaled to.
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size. Padding will be applied
after scaling the image to the desired_size.
aug_scale_min: a `float` with range between [0, 1.0] representing minimum
random scale applied to desired_size for training scale jittering.
aug_scale_max: a `float` with range between [1.0, inf] representing maximum
random scale applied to desired_size for training scale jittering.
seed: seed for random scale jittering.
method: function to resize input image to scaled image.
Returns:
output_image: `Tensor` of shape [height, width, 3] where [height, width]
equals to `output_size`.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [desired_height, desired_width],
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
desired_width] is the actual scaled image size, and [y_scale, x_scale] is
the scaling factor, which is the ratio of
scaled dimension / original dimension.
"""
with tf.name_scope('resize_and_crop_image_v2'):
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
scale_using_short_side = (
short_side / tf.minimum(image_size[0], image_size[1]))
scale_using_long_side = (
long_side / tf.maximum(image_size[0], image_size[1]))
scaled_size = tf.round(image_size * scale_using_short_side)
scaled_size = tf.where(
tf.greater(tf.maximum(scaled_size[0], scaled_size[1]), long_side),
tf.round(image_size * scale_using_long_side),
scaled_size)
desired_size = scaled_size
random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0)
if random_jittering:
random_scale = tf.random_uniform(
[], aug_scale_min, aug_scale_max, seed=seed)
scaled_size = tf.round(random_scale * scaled_size)
# Computes 2D image_scale.
image_scale = scaled_size / image_size
# Selects non-zero random offset (x, y) if scaled image is larger than
# desired_size.
if random_jittering:
max_offset = scaled_size - desired_size
max_offset = tf.where(tf.less(max_offset, 0),
tf.zeros_like(max_offset),
max_offset)
offset = max_offset * tf.random_uniform([2,], 0, 1, seed=seed)
offset = tf.cast(offset, tf.int32)
else:
offset = tf.zeros((2,), tf.int32)
scaled_image = tf.image.resize_images(
image, tf.cast(scaled_size, tf.int32), method=method)
if random_jittering:
scaled_image = scaled_image[
offset[0]:offset[0] + desired_size[0],
offset[1]:offset[1] + desired_size[1], :]
output_image = tf.image.pad_to_bounding_box(
scaled_image, 0, 0, padded_size[0], padded_size[1])
image_info = tf.stack([
image_size,
tf.cast(desired_size, dtype=tf.float32),
image_scale,
tf.cast(offset, tf.float32)])
return output_image, image_info
def center_crop_image(image):
"""Center crop a square shape slice from the input image.
It crops a square shape slice from the image. The side of the actual crop
is 224 / 256 = 0.875 of the short side of the original image. References:
[1] Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556
[2] Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385
Args:
image: a Tensor of shape [height, width, 3] representing the input image.
Returns:
cropped_image: a Tensor representing the center cropped image.
"""
with tf.name_scope('center_crop_image'):
image_size = tf.cast(tf.shape(image)[:2], dtype=tf.float32)
crop_size = CENTER_CROP_FRACTION * tf.minimum(image_size[0], image_size[1])
crop_offset = tf.cast((image_size - crop_size) / 2.0, dtype=tf.int32)
crop_size = tf.cast(crop_size, dtype=tf.int32)
cropped_image = image[
crop_offset[0]:crop_offset[0] + crop_size,
crop_offset[1]:crop_offset[1] + crop_size, :]
return cropped_image
def center_crop_image_v2(image_bytes, image_shape):
"""Center crop a square shape slice from the input image.
It crops a square shape slice from the image. The side of the actual crop
is 224 / 256 = 0.875 of the short side of the original image. References:
[1] Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556
[2] Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385
This is a faster version of `center_crop_image` which takes the original
image bytes and image size as the inputs, and partially decode the JPEG
bytes according to the center crop.
Args:
image_bytes: a Tensor of type string representing the raw image bytes.
image_shape: a Tensor specifying the shape of the raw image.
Returns:
cropped_image: a Tensor representing the center cropped image.
"""
with tf.name_scope('center_image_crop_v2'):
image_shape = tf.cast(image_shape, tf.float32)
crop_size = (
CENTER_CROP_FRACTION * tf.minimum(image_shape[0], image_shape[1]))
crop_offset = tf.cast((image_shape - crop_size) / 2.0, dtype=tf.int32)
crop_size = tf.cast(crop_size, dtype=tf.int32)
crop_window = tf.stack(
[crop_offset[0], crop_offset[1], crop_size, crop_size])
cropped_image = tf.image.decode_and_crop_jpeg(
image_bytes, crop_window, channels=3)
return cropped_image
def random_crop_image(image,
aspect_ratio_range=(3. / 4., 4. / 3.),
area_range=(0.08, 1.0),
max_attempts=10,
seed=1):
"""Randomly crop an arbitrary shaped slice from the input image.
Args:
image: a Tensor of shape [height, width, 3] representing the input image.
aspect_ratio_range: a list of floats. The cropped area of the image must
have an aspect ratio = width / height within this range.
area_range: a list of floats. The cropped reas of the image must contain
a fraction of the input image within this range.
max_attempts: the number of attempts at generating a cropped region of the
image of the specified constraints. After max_attempts failures, return
the entire image.
seed: the seed of the random generator.
Returns:
cropped_image: a Tensor representing the random cropped image. Can be the
original image if max_attempts is exhausted.
"""
with tf.name_scope('random_crop_image'):
crop_offset, crop_size, _ = tf.image.sample_distorted_bounding_box(
tf.shape(image),
tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]),
seed=seed,
min_object_covered=area_range[0],
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts)
cropped_image = tf.slice(image, crop_offset, crop_size)
return cropped_image
def random_crop_image_v2(image_bytes,
image_shape,
aspect_ratio_range=(3. / 4., 4. / 3.),
area_range=(0.08, 1.0),
max_attempts=10,
seed=1):
"""Randomly crop an arbitrary shaped slice from the input image.
This is a faster version of `random_crop_image` which takes the original
image bytes and image size as the inputs, and partially decode the JPEG
bytes according to the generated crop.
Args:
image_bytes: a Tensor of type string representing the raw image bytes.
image_shape: a Tensor specifying the shape of the raw image.
aspect_ratio_range: a list of floats. The cropped area of the image must
have an aspect ratio = width / height within this range.
area_range: a list of floats. The cropped reas of the image must contain
a fraction of the input image within this range.
max_attempts: the number of attempts at generating a cropped region of the
image of the specified constraints. After max_attempts failures, return
the entire image.
seed: the seed of the random generator.
Returns:
cropped_image: a Tensor representing the random cropped image. Can be the
original image if max_attempts is exhausted.
"""
with tf.name_scope('random_crop_image_v2'):
crop_offset, crop_size, _ = tf.image.sample_distorted_bounding_box(
image_shape,
tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]),
seed=seed,
min_object_covered=area_range[0],
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts)
offset_y, offset_x, _ = tf.unstack(crop_offset)
crop_height, crop_width, _ = tf.unstack(crop_size)
crop_window = tf.stack([offset_y, offset_x, crop_height, crop_width])
cropped_image = tf.image.decode_and_crop_jpeg(
image_bytes, crop_window, channels=3)
return cropped_image
def resize_and_crop_boxes(boxes,
image_scale,
output_size,
offset):
"""Resizes boxes to output size with scale and offset.
Args:
boxes: `Tensor` of shape [N, 4] representing ground truth boxes.
image_scale: 2D float `Tensor` representing scale factors that apply to
[height, width] of input image.
output_size: 2D `Tensor` or `int` representing [height, width] of target
output image size.
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled
boxes.
Returns:
boxes: `Tensor` of shape [N, 4] representing the scaled boxes.
"""
with tf.name_scope('resize_and_crop_boxes'):
# Adjusts box coordinates based on image_scale and offset.
boxes *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
boxes -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
# Clips the boxes.
boxes = box_utils.clip_boxes(boxes, output_size)
return boxes
def resize_and_crop_masks(masks,
image_scale,
output_size,
offset):
"""Resizes boxes to output size with scale and offset.
Args:
masks: `Tensor` of shape [N, H, W, 1] representing ground truth masks.
image_scale: 2D float `Tensor` representing scale factors that apply to
[height, width] of input image.
output_size: 2D `Tensor` or `int` representing [height, width] of target
output image size.
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled
boxes.
Returns:
masks: `Tensor` of shape [N, H, W, 1] representing the scaled masks.
"""
with tf.name_scope('resize_and_crop_masks'):
mask_size = tf.cast(tf.shape(masks)[1:3], tf.float32)
# Pad masks to avoid empty mask annotations.
masks = tf.concat([tf.zeros([1, mask_size[0], mask_size[1], 1],
dtype=masks.dtype), masks], axis=0)
scaled_size = tf.cast(image_scale * mask_size, tf.int32)
scaled_masks = tf.image.resize_images(
masks, scaled_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
offset = tf.cast(offset, tf.int32)
scaled_masks = scaled_masks[
:, offset[0]:offset[0] + output_size[0],
offset[1]:offset[1] + output_size[1], :]
output_masks = tf.image.pad_to_bounding_box(
scaled_masks, 0, 0, output_size[0], output_size[1])
# Remove padding.
output_masks = output_masks[1::]
return output_masks
def random_horizontal_flip(image, boxes=None, masks=None, roi_boxes=None):
"""Randomly flips input image and bounding boxes."""
results = preprocessor.random_horizontal_flip(image, boxes, masks, roi_boxes)
if boxes is None and masks is None and roi_boxes is None:
return results[0]
else:
return results