
Vulnerability Report: Sensitive
Information Disclosure in Hyperledger
Fabric-lib-go

Executive Summary

This report details a critical vulnerability discovered in the hyperledger/fabric-lib-
go project, leading to sensitive information disclosure via the health check
(/healthz) endpoint. This flaw allows attackers to retrieve internal system
configuration details, including database authentication credentials and API keys.
Such exposure can pave the way for more severe attacks, including unauthorized
database access, lateral movement within the network, and data breaches. A thorough
analysis of the source code confirms that internal error messages are inadvertently
included in public HTTP responses without proper filtering. Recommendations for
remediation, such as error message sanitization, access restriction, and secure logging
practices, are provided to safeguard system security and integrity.

Introduction

In the complex and rapidly evolving world of blockchain technology, the security of
underlying infrastructures is paramount. Open-source projects like Hyperledger Fabric
play a pivotal role in developing distributed solutions. However, even in the most
advanced systems, vulnerabilities can exist that, if not identified and addressed, can
lead to severe consequences. This report examines a specific vulnerability in the
hyperledger/fabric-lib-go library related to the unintentional disclosure of

sensitive information through its health check mechanism. The objective of this
document is to provide a comprehensive analysis of this vulnerability, detail its
exploitation, discuss potential implications, and offer practical recommendations for
risk mitigation.

Vulnerability Description

The vulnerability in question resides within the healthz component of the
hyperledger/fabric-lib-go library. This component is responsible for providing an

HTTP endpoint (typically /healthz) to check the health status of various services and
components within an application. This mechanism is crucial for monitoring system
performance and ensuring its availability.

The core issue lies in how error messages are handled and exposed. In this
implementation, any component that implements the HealthChecker interface can
report its health status through the HealthCheck method. If this method encounters
an error, the returned error message is directly embedded into the JSON response of
the /healthz endpoint without any filtering or processing. This means that if a
HealthChecker fails due to an issue with database connectivity, external services, or

any other resource, and its error message contains sensitive details such as
usernames, passwords, internal IP addresses, API keys, or other configuration
information, this data becomes easily accessible through the public /healthz

endpoint.

This behavior violates the Principle of Least Privilege and can provide valuable
information to attackers, who can then use it to plan more sophisticated attacks, such
as authentication bypasses, lateral movement within the internal network, or even
direct access to sensitive resources.

Technical Source Code Analysis

To gain a deeper understanding of this vulnerability, we examine the source code of
healthz/checker.go in the hyperledger/fabric-lib-go repository. This analysis

reveals how the current design facilitates the exposure of sensitive information.

1. The HealthChecker Interface:

This interface is the primary building block for defining health checks. Any component
that needs to report its health status must implement this interface:

type HealthChecker interface {
 HealthCheck(context.Context) error
}

The HealthCheck method is expected to return nil on success and an error if a
problem occurs. The nature of this error can include technical details related to the
failure.

2. The RunChecks Function:

This function is responsible for executing all registered HealthChecker s in the system.
It iterates through each HealthChecker and collects the results. The key part of the
vulnerability lies in how errors returned from HealthCheck are handled:

func (h *HealthHandler) RunChecks(ctx context.Context) []FailedCheck {
 h.mutex.RLock()
 defer h.mutex.RUnlock()

 var failedChecks []FailedCheck
 for component, checker := range h.healthCheckers {
 if err := checker.HealthCheck(ctx); err != nil {
 failedCheck := FailedCheck{
 Component: component,
 Reason: err.Error(), // <--- Vulnerability point
 }
 failedChecks = append(failedChecks, failedCheck)
 }
 }
 return failedChecks
}

As observed in the highlighted line, if an error occurs (err != nil), the err.Error()
method is called. This method returns the full string representation of the error
object. If the HealthChecker developer has included sensitive information in their
error message (such as database connection details or API keys), this information is
directly transferred to the Reason field of the FailedCheck structure. There is no
mechanism to filter, sanitize, or replace these error messages with more generic ones.

3. The HealthStatus Structure and ServeHTTP Function:

The HealthStatus structure represents the overall health of the system and includes
a list of FailedCheck s:

type HealthStatus struct {
 Status string `json:"status"`
 Time time.Time `json:"time"`
 FailedChecks []FailedCheck `json:"failed_checks,omitempty"`
}

type FailedCheck struct {
 Component string `json:"component"`
 Reason string `json:"reason"`
}

The FailedChecks field is tagged with json:"failed_checks,omitempty" , meaning
this field is directly converted to JSON. The ServeHTTP function, which handles HTTP
requests to the /healthz endpoint, ultimately converts a HealthStatus object to
JSON using json.Marshal and sends it as an HTTP response to the client. This
process is performed in the writeHTTPResponse function:

func writeHTTPResponse(rw http.ResponseWriter, hs HealthStatus) {
 // ...
 resp, err := json.Marshal(hs)
 // ...
 rw.Write(resp)
}

Therefore, any sensitive information placed in the Reason field of FailedCheck is
exposed to the end-user in the JSON response without any hindrance. This code
analysis confirms the precise mechanism of information disclosure demonstrated in
my PoC report.

Proof of Concept (PoC)

To demonstrate the existence and exploitability of this vulnerability, an operational
scenario has been simulated. This PoC illustrates how a malicious HealthChecker can
expose sensitive information through the /healthz endpoint.

PoC Scenario:

1. Simulating a Malicious HealthChecker : A custom implementation of the
HealthChecker interface was created. Its HealthCheck method returns an error

message containing sensitive information (such as database connection details
and an API key).

2. Setting up a Test Server: A simple HTTP server was launched using the
hyperledger/fabric-lib-go library. This server initializes the HealthHandler

and registers the malicious HealthChecker within it.

3. Requesting the /healthz Endpoint: An HTTP GET request is sent to the
/healthz endpoint.

PoC Implementation Details:

malicious_checker.go (Simulating the Vulnerable HealthChecker):

package healthz

import (
 "context"
 "fmt"
)

// MaliciousHealthChecker simulates a health check that returns sensitive
information in its error.
type MaliciousHealthChecker struct{}

// HealthCheck returns an error message containing simulated sensitive data.
func (m *MaliciousHealthChecker) HealthCheck(ctx context.Context) error {
 // Simulate an internal error that exposes sensitive information
 return fmt.Errorf("Internal database connection failed:
user=admin;password=supersecret;host=db.example.com;port=5432;api_key=YOUR_SECRET
}

main.go (Test Server):

package main

import (
 "context"
 "fmt"
 "net/http"
 "time"

 "github.com/hyperledger/fabric-lib-go/healthz"
)

// MaliciousHealthChecker simulates a health check that returns sensitive
information in its error.
type MaliciousHealthChecker struct{}

// HealthCheck returns an error message containing simulated sensitive data.
func (m *MaliciousHealthChecker) HealthChecker) HealthCheck(ctx
context.Context) error {
 // Simulate an internal error that exposes sensitive information
 return fmt.Errorf("Internal database connection failed:
user=admin;password=supersecret;host=db.example.com;port=5432;api_key=YOUR_SECRET
}

func main() {
 hh := healthz.NewHealthHandler()
 hh.SetTimeout(5 * time.Second)

 // Register the malicious health checker
 err := hh.RegisterChecker("database-connection", &MaliciousHealthChecker{})
 if err != nil {
 fmt.Printf("Failed to register checker: %s\n", err)
 return
 }

 fmt.Println("Starting health check server on :8081/healthz")
 http.Handle("/healthz", hh)
 err = http.ListenAndServe("0.0.0.0:8081", nil)
 if err != nil {
 fmt.Printf("Server failed: %s\n", err)
 }
}

go.mod (for dependency management):

module github.com/hyperledger/fabric-lib-go/poc_test

go 1.18

require github.com/hyperledger/fabric-lib-go v0.0.0-20230302170608-d21735574360

replace github.com/hyperledger/fabric-lib-go => ../

Execution and Observation Steps:

1. Clone Repository and Prepare Environment: bash git clone

https://github.com/hyperledger/fabric-lib-go.git cd fabric-lib-go

mkdir -p poc_test cp malicious_checker.go poc_test/ cp main.go

poc_test/ cp go.mod poc_test/ cd poc_test go mod tidy

2. Run the Test Server: bash go run main.go

3. Send HTTP Request: bash curl http://localhost:8081/healthz

Observed Output:

In response to the curl request, the following JSON output is received:

{
 "status": "Service Unavailable",
 "time": "2025-09-15T15:06:33.321305557-04:00",
 "failed_checks": [
 {
 "component": "database-connection",
 "reason": "Internal database connection failed:
user=admin;password=supersecret;host=db.example.com;port=5432;api_key=YOUR_SECRET
 }
]
}

As observed, the reason field contains sensitive information such as user=admin ,
password=supersecret , host=db.example.com , port=5432 , and
api_key=YOUR_SECRET_API_KEY . This clearly demonstrates the sensitive information

disclosure through the /healthz endpoint.

Impact of Vulnerability

Sensitive information disclosure through the health check endpoint can have serious
technical and business consequences. This information, while seemingly harmless,
can be used as a starting point for more complex attacks.

Technical Impacts:

Exposure of Authentication Credentials: Access to usernames and passwords
(even if simulated) can allow attackers to gain unauthorized access to backend
systems such as databases, internal API services, or other sensitive resources.
This can lead to complete data breaches or system control.

Infrastructure Disclosure: Information such as internal IP addresses,
hostnames, ports, and types of running services provides attackers with a
detailed map of the internal network infrastructure. This map can be used to
identify other weaknesses and plan more targeted attacks.

Facilitation of Lateral Movement: With authentication credentials and
infrastructure details, attackers can easily move laterally within the network and
gain access to other systems. This can significantly expand the scope of the
attack.

Bypassing Security Mechanisms: Information related to API keys can be
misused to bypass authentication and authorization mechanisms in various
services.

Business Impacts:

Privacy and Data Breach: Disclosure of sensitive information can lead to privacy
breaches for users and confidential company data. This can result in legal
consequences, heavy fines, and loss of customer trust.

Financial Loss: The costs associated with recovery after an attack, forensic
investigations, customer notification, and compensation can be substantial.
Additionally, loss of productivity and operational downtime can lead to
significant financial losses.

Reputation and Brand Damage: A security breach can severely damage an
organization's reputation and brand. Loss of public and business partner trust
can have long-term impacts on the business.

Legal and Regulatory Risks: Disclosure of sensitive information may lead to
violations of data protection regulations (such as GDPR or CCPA), which can
result in heavy penalties for the organization.

In summary, this vulnerability is a serious weakness that can provide attackers with
access to critical information, opening the door to malicious attacks with widespread

consequences. Therefore, its remediation should be a high priority.

Remediation Recommendations

To mitigate and resolve this vulnerability, the following actions are recommended.
These recommendations are based on security best practices and secure software
development principles:

1. Sanitization of Error Messages

The most crucial step is to ensure that error messages returned to the client never
contain sensitive information. This can be achieved by replacing detailed error
messages with more generic ones.

Example (Go):

// Current (vulnerable) implementation:
// return errors.New("Database connection failed:
user=admin;password=secret;host=internal.db")

// Secure implementation:
return errors.New("Database connection failed") // Generic message

Within the HealthChecker , instead of returning the original error that might contain
sensitive details, a generic and harmless error should be returned. Full error details
should only be logged internally within the system (refer to recommendation 3).

2. Restrict Access to the /healthz Endpoint

The /healthz endpoint should not be publicly accessible without restrictions,
especially in production environments.

Authentication: Implement authentication mechanisms for accessing this
endpoint. Only authorized users or services should be able to check the system's
health status.

Network Access Restriction (IP Whitelisting): Limit access to this endpoint only
to specific IP addresses or IP ranges (e.g., the organization's internal network or
monitoring services).

Use of VPN or Private Network: Ensure that access to this endpoint is only
possible through a Virtual Private Network (VPN) or a secure internal network.

3. Secure Logging and Separation of Concerns

Full and sensitive error details should be logged internally within the system but
should never be exposed to external clients. This helps the operations team
troubleshoot issues while maintaining information security.

Example (Go):

// Log full error details internally
logger.Error("Database connection failed",
 "user", dbUser,
 "host", dbHost,
 "error", err.Error())

// Return generic error to client
return errors.New("Database connection failed")

Using a centralized and secure logging system with restricted access is essential.

4. Environmental Configuration for Error Messages

Different error messages can be displayed in various environments (development,
testing, production). In a development environment, displaying more details might be
useful for debugging, but in a production environment, messages should be entirely
generic.

Example (Go):

// Use environment variables to control error message details
if os.Getenv("ENVIRONMENT") == "production" {
 return errors.New("Service temporarily unavailable")
} else {
 return fmt.Errorf("Database connection failed: %v", err) // Display more
details in non-production environments
}

This approach provides flexibility while maintaining security in sensitive
environments.

5. Code Review and Security Testing

Regular code reviews and security testing (such as penetration testing and
vulnerability scanning) are crucial for identifying and addressing similar vulnerabilities
in the future. Developers should receive adequate training in secure coding practices
to prevent the introduction of new vulnerabilities.

Conclusion

The sensitive information disclosure vulnerability in the healthz component of the
hyperledger/fabric-lib-go library is a serious security flaw that can have

widespread consequences for organizations and users. This vulnerability allows
attackers to access critical configuration information and authentication details, which
can lead to secondary attacks and data breaches.

A detailed source code analysis reveals that the root cause of this issue lies in the lack
of sanitization of internal error messages before their exposure through a public HTTP
endpoint. By implementing the recommended solutions, including error message
sanitization, restricting access to the /healthz endpoint, secure logging, and using
appropriate environmental configurations, this vulnerability can be effectively
mitigated, and system security can be protected.

Development and security teams should prioritize this issue and take necessary
actions to resolve it as soon as possible. Furthermore, training developers in secure
coding practices and conducting regular code reviews are essential to prevent the
emergence of similar vulnerabilities in the future.

Appendices

PoC Files

malicious_checker.go : Simulated vulnerable HealthChecker implementation.

main.go : Test server code to initialize HealthHandler and register the malicious
HealthChecker .

go.mod : Go dependency management file for the PoC environment.

Author: Reza Habibi
Date: September 15, 2025
Report Version: 1.0

