Quickstart (Local)

How to get started running Toolbox locally with Python, PostgreSQL, and GoogleGenAI, LangGraph, LlamaIndex or Agent Development Kit.

Open In Colab

Before you begin

This guide assumes you have already done the following:

  1. Installed Python 3.9+ (including pip and your preferred virtual environment tool for managing dependencies e.g. venv)
  2. Installed PostgreSQL 16+ and the psql client

Step 1: Set up your database

In this section, we will create a database, insert some data that needs to be access by our agent, and create a database user for Toolbox to connect with.

  1. Connect to postgres using the psql command:

    psql -h 127.0.0.1 -U postgres
    

    Here, postgres denotes the default postgres superuser.

  2. Create a new database and a new user:

    Tip

    For a real application, it’s best to follow the principle of least permission and only grant the privileges your application needs.

      CREATE USER toolbox_user WITH PASSWORD 'my-password';
    
      CREATE DATABASE toolbox_db;
      GRANT ALL PRIVILEGES ON DATABASE toolbox_db TO toolbox_user;
    
      ALTER DATABASE toolbox_db OWNER TO toolbox_user;
    
  3. End the database session:

    \q
    
  4. Connect to your database with your new user:

    psql -h 127.0.0.1 -U toolbox_user -d toolbox_db
    
  5. Create a table using the following command:

    CREATE TABLE hotels(
      id            INTEGER NOT NULL PRIMARY KEY,
      name          VARCHAR NOT NULL,
      location      VARCHAR NOT NULL,
      price_tier    VARCHAR NOT NULL,
      checkin_date  DATE    NOT NULL,
      checkout_date DATE    NOT NULL,
      booked        BIT     NOT NULL
    );
    
  6. Insert data into the table.

    INSERT INTO hotels(id, name, location, price_tier, checkin_date, checkout_date, booked)
    VALUES 
      (1, 'Hilton Basel', 'Basel', 'Luxury', '2024-04-22', '2024-04-20', B'0'),
      (2, 'Marriott Zurich', 'Zurich', 'Upscale', '2024-04-14', '2024-04-21', B'0'),
      (3, 'Hyatt Regency Basel', 'Basel', 'Upper Upscale', '2024-04-02', '2024-04-20', B'0'),
      (4, 'Radisson Blu Lucerne', 'Lucerne', 'Midscale', '2024-04-24', '2024-04-05', B'0'),
      (5, 'Best Western Bern', 'Bern', 'Upper Midscale', '2024-04-23', '2024-04-01', B'0'),
      (6, 'InterContinental Geneva', 'Geneva', 'Luxury', '2024-04-23', '2024-04-28', B'0'),
      (7, 'Sheraton Zurich', 'Zurich', 'Upper Upscale', '2024-04-27', '2024-04-02', B'0'),
      (8, 'Holiday Inn Basel', 'Basel', 'Upper Midscale', '2024-04-24', '2024-04-09', B'0'),
      (9, 'Courtyard Zurich', 'Zurich', 'Upscale', '2024-04-03', '2024-04-13', B'0'),
      (10, 'Comfort Inn Bern', 'Bern', 'Midscale', '2024-04-04', '2024-04-16', B'0');
    
  7. End the database session:

    \q
    

Step 2: Install and configure Toolbox

In this section, we will download Toolbox, configure our tools in a tools.yaml, and then run the Toolbox server.

  1. Download the latest version of Toolbox as a binary:

    Tip

    Select the correct binary corresponding to your OS and CPU architecture.

    export OS="linux/amd64" # one of linux/amd64, darwin/arm64, darwin/amd64, or windows/amd64
    curl -O https://storage.googleapis.com/genai-toolbox/v0.4.0/$OS/toolbox
    
  2. Make the binary executable:

    chmod +x toolbox
    
  3. Write the following into a tools.yaml file. Be sure to update any fields such as user, password, or database that you may have customized in the previous step.

    Tip

    In practice, use environment variable replacement with the format ${ENV_NAME} instead of hardcoding your secrets into the configuration file.

    sources:
      my-pg-source:
        kind: postgres
        host: 127.0.0.1
        port: 5432
        database: toolbox_db
        user: ${USER_NAME}
        password: ${PASSWORD}
    tools:
      search-hotels-by-name:
        kind: postgres-sql
        source: my-pg-source
        description: Search for hotels based on name.
        parameters:
          - name: name
            type: string
            description: The name of the hotel.
        statement: SELECT * FROM hotels WHERE name ILIKE '%' || $1 || '%';
      search-hotels-by-location:
        kind: postgres-sql
        source: my-pg-source
        description: Search for hotels based on location.
        parameters:
          - name: location
            type: string
            description: The location of the hotel.
        statement: SELECT * FROM hotels WHERE location ILIKE '%' || $1 || '%';
      book-hotel:
        kind: postgres-sql
        source: my-pg-source
        description: >-
           Book a hotel by its ID. If the hotel is successfully booked, returns a NULL, raises an error if not.
        parameters:
          - name: hotel_id
            type: string
            description: The ID of the hotel to book.
        statement: UPDATE hotels SET booked = B'1' WHERE id = $1;
      update-hotel:
        kind: postgres-sql
        source: my-pg-source
        description: >-
          Update a hotel's check-in and check-out dates by its ID. Returns a message
          indicating  whether the hotel was successfully updated or not.
        parameters:
          - name: hotel_id
            type: string
            description: The ID of the hotel to update.
          - name: checkin_date
            type: string
            description: The new check-in date of the hotel.
          - name: checkout_date
            type: string
            description: The new check-out date of the hotel.
        statement: >-
          UPDATE hotels SET checkin_date = CAST($2 as date), checkout_date = CAST($3
          as date) WHERE id = $1;
      cancel-hotel:
        kind: postgres-sql
        source: my-pg-source
        description: Cancel a hotel by its ID.
        parameters:
          - name: hotel_id
            type: string
            description: The ID of the hotel to cancel.
        statement: UPDATE hotels SET booked = B'0' WHERE id = $1;
    toolsets:
      my-toolset:
        - search-hotels-by-name
        - search-hotels-by-location
        - book-hotel
        - update-hotel
        - cancel-hotel
    

    For more info on tools, check out the Resources section of the docs.

  4. Run the Toolbox server, pointing to the tools.yaml file created earlier:

    ./toolbox --tools_file "tools.yaml"
    

Step 3: Connect your agent to Toolbox

In this section, we will write and run an agent that will load the Tools from Toolbox.

Tip

If you prefer to experiment within a Google Colab environment, you can connect to a local runtime.

  1. In a new terminal, install the SDK package.

    pip install toolbox-core
    pip install toolbox-langchain
    pip install toolbox-langchain
    pip install toolbox-llamaindex
  2. Install other required dependencies:

    pip install google-genai
    pip install google-adk langchain
    # TODO(developer): replace with correct package if needed
    
    pip install langgraph langchain-google-vertexai
    
    # pip install langchain-google-genai
    
    # pip install langchain-anthropic
    # TODO(developer): replace with correct package if needed
    
    pip install llama-index-llms-google-genai
    
    # pip install llama-index-llms-anthropic
  3. Create a new file named hotel_agent.py and copy the following code to create an agent:

    import asyncio
    
    from google import genai
    from google.genai.types import (
        Content,
        FunctionDeclaration,
        GenerateContentConfig,
        Part,
        Tool,
    )
    
    from toolbox_core import ToolboxClient
    
    prompt = """
      You're a helpful hotel assistant. You handle hotel searching, booking and
      cancellations. When the user searches for a hotel, mention it's name, id,
      location and price tier. Always mention hotel id while performing any
      searches. This is very important for any operations. For any bookings or
      cancellations, please provide the appropriate confirmation. Be sure to
      update checkin or checkout dates if mentioned by the user.
      Don't ask for confirmations from the user.
    """
    
    queries = [
        "Find hotels in Basel with Basel in it's name.",
        "Please book the hotel Hilton Basel for me.",
        "This is too expensive. Please cancel it.",
        "Please book Hyatt Regency for me",
        "My check in dates for my booking would be from April 10, 2024 to April 19, 2024.",
    ]
    
    async def run_application():
        toolbox_client = ToolboxClient("<http://127.0.0.1:5000>")
    
        # The toolbox_tools list contains Python callables (functions/methods) designed for LLM tool-use
        # integration. While this example uses Google's genai client, these callables can be adapted for
        # various function-calling or agent frameworks. For easier integration with supported frameworks
        # (https://github.com/googleapis/mcp-toolbox-python-sdk/tree/main/packages), use the
        # provided wrapper packages, which handle framework-specific boilerplate.
        toolbox_tools = await toolbox_client.load_toolset("my-toolset")
        genai_client = genai.Client(
            vertexai=True, project="project-id", location="us-central1"
        )
    
        genai_tools = [
            Tool(
                function_declarations=[
                    FunctionDeclaration.from_callable_with_api_option(callable=tool)
                ]
            )
            for tool in toolbox_tools
        ]
        history = []
        for query in queries:
            user_prompt_content = Content(
                role="user",
                parts=[Part.from_text(text=query)],
            )
            history.append(user_prompt_content)
    
            response = genai_client.models.generate_content(
                model="gemini-2.0-flash",
                contents=history,
                config=GenerateContentConfig(
                    system_instruction=prompt,
                    tools=genai_tools,
                ),
            )
            history.append(response.candidates[0].content)
            function_response_parts = []
            for function_call in response.function_calls:
                fn_name = function_call.name
                # The tools are sorted alphabetically
                if fn_name == "search-hotels-by-name":
                    function_result = await toolbox_tools[3](**function_call.args)
                elif fn_name == "search-hotels-by-location":
                    function_result = await toolbox_tools[2](**function_call.args)
                elif fn_name == "book-hotel":
                    function_result = await toolbox_tools[0](**function_call.args)
                elif fn_name == "update-hotel":
                    function_result = await toolbox_tools[4](**function_call.args)
                elif fn_name == "cancel-hotel":
                    function_result = await toolbox_tools[1](**function_call.args)
                else:
                    raise ValueError("Function name not present.")
                function_response = {"result": function_result}
                function_response_part = Part.from_function_response(
                    name=function_call.name,
                    response=function_response,
                )
                function_response_parts.append(function_response_part)
    
            if function_response_parts:
                tool_response_content = Content(role="tool", parts=function_response_parts)
                history.append(tool_response_content)
    
            response2 = genai_client.models.generate_content(
                model="gemini-2.0-flash-001",
                contents=history,
                config=GenerateContentConfig(
                    tools=genai_tools,
                ),
            )
            final_model_response_content = response2.candidates[0].content
            history.append(final_model_response_content)
            print(response2.text)
    
    asyncio.run(run_application())
    from google.adk.agents import Agent
    from google.adk.tools.toolbox_tool import ToolboxTool
    from google.adk.runners import Runner
    from google.adk.sessions import InMemorySessionService
    from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
    from google.genai import types
    
    import os
    
    # TODO(developer): replace this with your Google API key
    
    os.environ['GOOGLE_API_KEY'] = 'your-api-key'
    
    toolbox_tools = ToolboxTool("<http://127.0.0.1:5000>")
    
    prompt = """
      You're a helpful hotel assistant. You handle hotel searching, booking and
      cancellations. When the user searches for a hotel, mention it's name, id,
      location and price tier. Always mention hotel ids while performing any
      searches. This is very important for any operations. For any bookings or
      cancellations, please provide the appropriate confirmation. Be sure to
      update checkin or checkout dates if mentioned by the user.
      Don't ask for confirmations from the user.
    """
    
    root_agent = Agent(
        model='gemini-2.0-flash',
        name='hotel_agent',
        description='A helpful AI assistant.',
        instruction=prompt,
        tools=toolbox_tools.get_toolset("my-toolset"),
    )
    
    session_service = InMemorySessionService()
    artifacts_service = InMemoryArtifactService()
    session = session_service.create_session(
        state={}, app_name='hotel_agent', user_id='123'
    )
    runner = Runner(
        app_name='hotel_agent',
        agent=root_agent,
        artifact_service=artifacts_service,
        session_service=session_service,
    )
    
    queries = [
        "Find hotels in Basel with Basel in it's name.",
        "Can you book the Hilton Basel for me?",
        "Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
        "My check in dates would be from April 10, 2024 to April 19, 2024.",
    ]
    
    for query in queries:
        content = types.Content(role='user', parts=[types.Part(text=query)])
        events = runner.run(session_id=session.id,
                            user_id='123', new_message=content)
    
        responses = (
          part.text
          for event in events
          for part in event.content.parts
          if part.text is not None
        )
    
        for text in responses:
          print(text)
    from langgraph.prebuilt import create_react_agent
    
    # TODO(developer): replace this with another import if needed
    
    from langchain_google_vertexai import ChatVertexAI
    
    # from langchain_google_genai import ChatGoogleGenerativeAI
    
    # from langchain_anthropic import ChatAnthropic
    
    from langgraph.checkpoint.memory import MemorySaver
    
    from toolbox_langchain import ToolboxClient
    
    prompt = """
      You're a helpful hotel assistant. You handle hotel searching, booking and
      cancellations. When the user searches for a hotel, mention it's name, id,
      location and price tier. Always mention hotel ids while performing any
      searches. This is very important for any operations. For any bookings or
      cancellations, please provide the appropriate confirmation. Be sure to
      update checkin or checkout dates if mentioned by the user.
      Don't ask for confirmations from the user.
    """
    
    queries = [
        "Find hotels in Basel with Basel in it's name.",
        "Can you book the Hilton Basel for me?",
        "Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
        "My check in dates would be from April 10, 2024 to April 19, 2024.",
    ]
    
    async def run_application():
        # TODO(developer): replace this with another model if needed
        model = ChatVertexAI(model_name="gemini-1.5-pro")
        # model = ChatGoogleGenerativeAI(model="gemini-1.5-pro")
        # model = ChatAnthropic(model="claude-3-5-sonnet-20240620")
    
        # Load the tools from the Toolbox server
        client = ToolboxClient("http://127.0.0.1:5000")
        tools = await client.aload_toolset()
    
        agent = create_react_agent(model, tools, checkpointer=MemorySaver())
    
        config = {"configurable": {"thread_id": "thread-1"}}
        for query in queries:
            inputs = {"messages": [("user", prompt + query)]}
            response = agent.invoke(inputs, stream_mode="values", config=config)
            print(response["messages"][-1].content)
    
    asyncio.run(run_application())
    import asyncio
    import os
    
    from llama_index.core.agent.workflow import AgentWorkflow
    
    from llama_index.core.workflow import Context
    
    # TODO(developer): replace this with another import if needed
    
    from llama_index.llms.google_genai import GoogleGenAI
    
    # from llama_index.llms.anthropic import Anthropic
    
    from toolbox_llamaindex import ToolboxClient
    
    prompt = """
      You're a helpful hotel assistant. You handle hotel searching, booking and
      cancellations. When the user searches for a hotel, mention it's name, id,
      location and price tier. Always mention hotel ids while performing any
      searches. This is very important for any operations. For any bookings or
      cancellations, please provide the appropriate confirmation. Be sure to
      update checkin or checkout dates if mentioned by the user.
      Don't ask for confirmations from the user.
    """
    
    queries = [
        "Find hotels in Basel with Basel in it's name.",
        "Can you book the Hilton Basel for me?",
        "Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
        "My check in dates would be from April 10, 2024 to April 19, 2024.",
    ]
    
    async def run_application():
        # TODO(developer): replace this with another model if needed
        llm = GoogleGenAI(
            model="gemini-1.5-pro",
            vertexai_config={"project": "project-id", "location": "us-central1"},
        )
        # llm = GoogleGenAI(
        #     api_key=os.getenv("GOOGLE_API_KEY"),
        #     model="gemini-1.5-pro",
        # )
        # llm = Anthropic(
        #   model="claude-3-7-sonnet-latest",
        #   api_key=os.getenv("ANTHROPIC_API_KEY")
        # )
    
        # Load the tools from the Toolbox server
        client = ToolboxClient("http://127.0.0.1:5000")
        tools = await client.aload_toolset()
    
        agent = AgentWorkflow.from_tools_or_functions(
            tools,
            llm=llm,
            system_prompt=prompt,
        )
        ctx = Context(agent)
        for query in queries:
             response = await agent.run(user_msg=query, ctx=ctx)
             print(f"---- {query} ----")
             print(str(response))
    
    asyncio.run(run_application())

    To learn more about tool calling with Google GenAI, check out the Google GenAI Documentation.

    To learn more about Agent Development Kit, check out the ADK documentation.

    To learn more about Agents in LangChain, check out the LangGraph Agent documentation.

    To learn more about Agents in LlamaIndex, check out the LlamaIndex AgentWorkflow documentation.

  4. Run your agent, and observe the results:

    python hotel_agent.py
    
Last modified April 23, 2025: chore(main): release 0.4.0 (#411) (4ed16ccd)