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ABSTRACT
The rapid adoption of machine learning (ML) has underscored the

importance of serving ML models with high throughput and re-

source efficiency. Traditional approaches to managing increasing

query demands have predominantly focused on hardware scaling,

which involves increasing server count or computing power. How-

ever, this strategy can often be impractical due to limitations in the

available budget or compute resources. As an alternative, accuracy

scaling offers a promising solution by adjusting the accuracy of ML

models to accommodate fluctuating query demands. Yet, existing

accuracy scaling techniques target independent ML models and

tend to underperform while managing inference pipelines. Fur-

thermore, they lack integration with hardware scaling, leading to

potential resource inefficiencies during low-demand periods. To ad-

dress the limitations, this paper introduces Loki, a system designed

for serving inference pipelines effectively with both hardware and

accuracy scaling. Loki incorporates an innovative theoretical frame-

work for optimal resource allocation and an effective query routing

algorithm, aimed at improving system accuracy and minimizing

latency deadline violations. Our empirical evaluation demonstrates

that through accuracy scaling, the effective capacity of a fixed-size

cluster can be enhanced by more than 2.7× compared to relying

solely on hardware scaling. When compared with state-of-the-art

inference-serving systems, Loki achieves up to a 10× reduction in

Service Level Objective (SLO) violations, with minimal compro-

mises on accuracy and while fulfilling throughput demands.
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1 INTRODUCTION
The growing popularity of machine learning (ML) has led to the

development of model serving systems
1
, where pre-trained ML

models are hosted on a cluster of servers to provide fast and accurate

responses to inference queries. Model serving systems typically

guarantee certain Service Level Objectives (SLOs) to users in terms

of latency deadlines and, at the same time, strive to achieve high

throughput and high resource efficiency in order to serve as many

queries as possible in a given amount of time.

As query demand (measured by queries per second or QPS)

usually changes over time, model serving systems need to handle

demand variations gracefully. To accommodate increasing query

demands, conventional methods primarily rely on hardware scaling,

i.e., adding more devices or using more powerful accelerators, to im-

prove system throughput [10, 32]. However, hardware scaling may

not be feasible due to budget constraints or the limited availability

of hardware resources in edge clusters or private clouds.

Accuracy scaling. Accuracy scaling has recently been proposed

as an alternative to hardware scaling [5, 17]. A model serving sys-

tem that uses accuracy scaling adapts model accuracy instead of

hardware resources to gracefully handle query demand variations.

Accuracy scaling is motivated by the fact that ML models can offer

different levels of accuracy depending on the time spent computing

the answer: less time spent on computation leads to less accurate

results but higher throughput. ML models with different accuracy

profiles are called “model variants”, which can be created from

model compression techniques [7, 37], or as part of neural network

architecture designs. When the query demand is high, a model serv-

ing system with accuracy scaling serves queries using less accurate

model variants to avoid SLO violations. When the demand drops,

the system serves queries using more accurate model variants to

improve accuracy.

Accuracy scaling is a particularly effective strategy in scenarios

where query demands are so high that they risk overwhelming

the available servers. In such cases, accuracy scaling ensures that

the system continues to provide timely responses. These prompt

responses that are less accurate are often more critical than slower

more accurate responses, or worse, queries that fail to be processed

at all. Accuracy scaling is especially beneficial for real-time ML

applications, including interactive and cloud-based editing services,

where quick feedback is essential [13, 22].

Accuracy scaling can be strategically combined with hardware

scaling to optimize query handling. During periods of low query

demand, the model serving system can employ hardware scaling to

reduce the number of active servers, thereby optimizing resource

usage. As query demand escalates, the system can shift to accuracy

1
We use the terms “model serving” and “inference serving” interchangeably.
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scaling. This transition enables the system to enhance its through-

put capacity (in QPS), accommodating the surge in demand while

still adhering to the SLOs set for user satisfaction.

Limitations of existing approaches. The current approach to

accuracy scaling is primarily tailored for serving individual, inde-

pendent ML models. However, as ML becomes more integrated into

practical applications, the use of inference pipelines is increasingly
common. These pipelines combine multiple ML models to tackle

complex inference tasks and are becoming a standard part of ML in-

ference workloads. For instance, an image generation pipeline such

as Adobe Firefly [4] might sequentially employ a text embedding

model, a diffusion model, and an image super-resolution model to

produce high-resolution images from text prompts. The end-to-end

inference latency of these pipelines must adhere to the specific

SLOs set by the application (e.g., 200ms).

When the existing accuracy scaling method [5] is applied to

inference pipelines, it often leads to suboptimal resource allocation,

resulting in high SLO violation rates and poor response quality.

The core issue with the current accuracy scaling approach lies in its

pipeline-agnostic perspective on resource allocation. It adjusts the

accuracy of ML models and allocates computing resources without

considering the dependencies between the models in the different

tasks of a pipeline. This lack of consideration for the inter-model

relationships can impair the overall effectiveness of resource use in

complex, multi-model inference tasks.

Another limitation of the existing accuracy scaling method is

its lack of integration with hardware scaling. This shortcoming

becomes evident particularly during periods of low query demand.

In such scenarios, instead of scaling down the hardware resources,

current methods continue to utilize all available servers to handle

queries. This approach leads to inefficiencies, as it does not dynam-

ically adjust the server usage based on the actual demand, resulting

in unnecessary resource expenditure and under-utilization of the

server infrastructure.

The Loki system. To address the problem, this paper intro-

duces Loki
2
, a model serving system designed to handle inference

pipelines effectively using both hardware and accuracy scaling.

The primary objectives of Loki are to maximize the overall system

accuracy and minimize the active server count, while adapting to

fluctuating query demands. System accuracy is defined as the av-

erage accuracy across all queries processed by the system. Loki

operates under the assumption that, given sufficient resources, ev-

ery query would prefer the most accurate model variant. However,

it also recognizes that in situations where resources are constrained,

a timely response with slightly lower accuracy is acceptable.

When query demand is relatively low compared to available

server capacity, Loki optimizes resource usage by reducing the

number of active servers (and thus hardware costs) required to

process queries with the most accurate model variants. Under these

conditions, the system consistently achieves maximum accuracy. In

contrast, as the query demand increases, Loki smoothly transitions

to a pipeline-aware accuracy scaling mode. This mode focuses on

maximizing system accuracy while accommodating the increasing

2
Loki is named after a Norse mythology figure who possessed the ability to change

form and appearance, much like our system transitions between hardware and accuracy

scaling.

Hardware
Scaling

(Phase 1)

Accuracy
Scaling

(Phase 2)

Accuracy
Scaling

(Phase 3)

Figure 1: For a traffic analysis pipeline that consists of two
sequential tasks, Loki first accomodates the increase in query
demand by using hardware scaling. When demand increases
further, Loki successively decreases the accuracy of each
task of the pipeline to increase throughput to meet demand.
Phase 2 decreases the 2nd task’s accuracy as it causes smaller
end-to-end accuracy drop.

volume of queries, resulting in all servers actively participating in

query processing.

Functioning of Loki. To illustrate the functioning of Loki, we

hosted a simple two-task traffic analysis ML pipeline on a cluster

of 20 servers. The first task of the pipeline consists of an object

detection model for identifying cars in an image and the second task

classifies the identified car according to its make and model. Loki

managed the resources in the server cluster using both hardware

and accuracy scaling to serve user queries for this pipeline.

Figure 1 illustrates the functioning of Loki as it varied the system

throughput to meet the user demand, ensuring that no queries were

dropped. In phase 1, as demand increased, Loki accommodated the

demand by hardware scaling, while accuracy remained unchanged.

In this phase, Loki increased the number of available servers to meet

the increasing query demand, but continued to use model variants

that yield the highest accuracy. In the second phase at around 560

QPS, it is no longer possible to scale the hardware since the server

limits of the cluster have been reached. In response, Loki decreases

accuracy to serve the increasing demand. Loki recognized that it is

possible to get a larger increase in throughput for a given loss in

end-to-end accuracy of the pipeline by using a less accurate model

for the second task of the pipeline. Consequently, it decreased the

accuracy of the second task to increase throughput, while keeping

the accuracy of the first task at the highest level. As query demand

continued to increase to about 1550 QPS, the system could no longer

decrease the accuracy of task 2 to meet the demand. Therefore, it

entered phase 3 where it starts to decrease the accuracy of task 1

of the pipeline. This allows Loki to support upto 1765 QPS which

is maximum throughput the system can support without dropping

any request.

It should be noted that Loki can support 2.7× more throughput

at the end of phase 2 than a system that does hardware scaling

alone, albeit with a modest drop in accuracy of 13%. Further, Loki

can support up to 3× more throughput at the end of phase 2 than
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hardware scaling alone, albeit with a more significant accuracy

drop. In practice, there is usually a minimum level of acceptable

accuracy required for queries, which limits the amount of accuracy

scaling that can be performed.

Our contributions. Our specific contributions follow:
• Wedesign Loki, the first model serving system that integrates

hardware scaling with accuracy scaling to effectively serve

inference pipelines.

• We present a MILP-based theoretical framework for optimal

allocation of resources in a cluster that incorporates perfor-

mance models for the accuracy and throughput of inference

pipelines. Using this framework, Loki periodically decides

which model variants are hosted on which servers to meet

throughput, accuracy, and latency requirements.

• When queries arrive, they need to be routed to the right

sequence of model variants in the pipeline. For this task,

we propose an efficient routing algorithm that intelligently

routes the queries in real-time to maximize system accuracy

and minimize SLO violations.

• We evaluate Loki against two state-of-the-art model serv-

ing systems, one system that performs hardware scaling

but not accuracy scaling [10] and another that performs

accuracy scaling but is pipeline-agnostic [5]. Using query

workloads from synthetic and production traces, we show

that Loki reduces SLO violations bymore than 10× compared

to pipeline-agnostic accuracy scaling systems while using

2.7× fewer servers during off-peak times where the demand

is low. Further, Loki increases the effective capacity of the

cluster by more than 2.7× compared to systems that do not

perform accuracy scaling.

2 BACKGROUND AND CHALLENGES
This work is motivated by the importance of serving inference

pipelines and the benefits of accuracy scaling in model serving. We

provide the background and then outline the challenges in building

a pipeline-aware inference serving system.

2.1 Background
Inference pipelines. Inference pipelines integrate multiple ML

tasks together in a dataflow graph to address more complex tasks.

These pipelines can be represented as directed rooted trees, where
each node (or vertex) represents a task, the input, or the output, and

each directed edge of two tasks denotes the flow of data between

them
3
. The root of the tree is referred to as the source (i.e., the input)

and the leaves of the trees are the sinks (i.e., the outputs). Thus, the

rooted tree consists of multiple source-to-sink paths, where each

of these paths has its own end-to-end accuracy. The end-to-end

accuracy of the pipeline graph is the average of the end-to-end

accuracy of all the source-to-sink paths.

In the execution of an inference pipeline for serving a query

(also called a request
4
), the ML model for one task generates inter-

mediate outputs that serve as inputs (termed intermediate queries)

3
Loki does not support general directed acyclic graphs where an ML model derives in-

put from multiple models. This paper uses the terms “inference pipeline” and “pipeline

graph” interchangeably.

4
We use the terms query and request interchangeably in this work.
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Figure 2: Examples of inference pipelines
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Figure 3: Accuracy-throughput tradeoff for EfficientNet
model variants as profiled on an NVIDIA V100 GPU

for the ML model in the subsequent tasks. Figure 2 illustrates two

representative inference pipelines studied in this paper. The traffic

analysis pipeline can be used to generate traffic analytics on the

video feed from cameras at intersections. The social media pipeline

can be used by platforms such as Twitter and Facebook to detect

objects in the image and generate suggested captions.

Accuracy scaling. Accuracy scaling leverages the fact that

model variants with different compute complexities (e.g., models

from the EfficientNet family [39]) can be used to serve the same

inference task. A model variant that is more lightweight is usu-

ally less accurate, but can be executed faster, resulting in higher

throughput on the same hardware, as shown in Figure 3. The con-

cept of accuracy scaling was first introduced in Proteus [5], a model

serving system designed for handling independent ML models on

a cluster with a fixed number of servers. Accuracy scaling is par-

ticularly effective in managing high query demands with a limited

number of servers. In scenarios where the volume of queries ex-

ceeds the server capacity, accuracy scaling strategically reduces the

accuracy of the models. This reduction is done to ensure that the

system meets the latency deadlines of the queries, thus balancing

the trade-off between accuracy and timely response under heavy

load conditions.

2.2 Challenges
Despite the promise of accuracy scaling, applying it to serve infer-

ence pipelines is challenging due to the complexities introduced by

the inter-dependencies of ML models.

2.2.1 Optimal resource allocation. In this work, a resource alloca-

tion plan includes three key specifications: (1) the choice of model

variants for each task of an inference pipeline, (2) the number of

replicas for each model variant (termed replication factor), and (3)

the maximum batch size that can be used for each model variant.
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The maximum batch size corresponds to the maximum time budget

assigned to a task.

In the context of accuracy scaling, an optimal resource allocation

plan maximizes system accuracy while satisfying a target query

demand given a fixed cluster size. The accuracy scaling approach in-

troduced in Proteus [5] is pipeline-agnostic, meaning it adjusts the

accuracy of ML models individually without considering the inter-

dependencies between them. When applied to inference pipelines,

this approach can lead to suboptimal resource allocation, resulting

in poor query response quality and high rates of SLO violations.

These interdependencies present three major issues:

1. Impact of the accuracy of individual models on the end-to-end
accuracy of the pipeline. Choosing model variants for each task

must be made with the knowledge of its impact on the end-to-end

accuracy on the pipeline. When facing increased query demands,

the system should reduce the accuracy of models that minimally

affect the end-to-end pipeline accuracy. For instance, Figure 1 shows

that decreasing accuracy of the second task in the pipeline causes

smaller end-to-end accuracy drop compared to the first task. This

consideration is absent in the existing accuracy scaling methods,

which do not consider the influence of individual models on end-

to-end pipeline accuracy.

2. Throughput bottlenecks. The optimal batch size and replication

factor for each selected model variant depend on the throughput

bottleneck of the inference pipeline. If a given task is not the bot-

tleneck, increasing the batch size or assigning more resources to a

model variant of that task enhances throughput for that task but

does not necessarily improve overall system throughput. More-

over, allocating more resources to the bottleneck task may create

resource shortages for other tasks, potentially creating new bot-

tlenecks. Using a larger batch size at a given task also introduces

longer processing delays for that task, reducing the time available

for other tasks. This is a departure from the scenario addressed

by Proteus, where ML models are independent and throughput

improvements in any model enhance overall system throughput.

3. Workload multiplication effects. The workload of each task

can be influenced by the model variant used in preceding task. For

example, in a pipeline with a face detection model followed by a

face recognition model, the input demand for the recognition model

depends on the output of the detection model. A more accurate

detection model might detect more faces, thereby increasing the

workload for the recognition task. The existing accuracy scaling

approach fails to account for such workload dependencies between

models in resource management.

Our approach. We design performance models that assess how

a resource allocation plan influences system accuracy, latency, and

throughput capacity. These performance models are particularly

crafted to consider the intricate relationships between the models

in a inference pipeline. Utilizing these performance models, we

can frame the resource allocation problem within a Mixed-Integer

Linear Programming (MILP) framework and leverage MILP solvers

to determine the optimal resource allocation plan. Loki periodically

invokes the solver to re-allocate resources to accomondate macro-

scale query demand changes.

Additionally, the performance models enable us to integrate

hardware scaling into the same MILP framework used for accuracy
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Figure 4: System Architecture of Loki

scaling, albeit with a distinct optimization goal. In terms of hard-

ware scaling, the ideal resource allocation plan is defined as the one

that minimizes the number of active servers required to process

queries while meeting a target query demand. The optimization for-

mula for this objective is based on our performance model, which

delineates the connection between the system’s latency, through-

put capacity, and the specifics of a resource allocation plan. This

unified approach under the MILP framework allows for a cohesive

treatment of both hardware and accuracy scaling, each with its

unique optimization targets, while maintaining a consistent under-

lying methodology. We present the performance models and our

optimization in Section 4.

2.2.2 Query execution with accuracy scaling. Another challenge
in utilizing accuracy scaling for serving inference pipelines is de-

ciding the optimal execution path for each incoming query. This

decision aims to enhance system accuracy while minimizing vio-

lations of SLO. The MILP formulation used for system accuracy

estimation operates under the assumption that each deployed ML

model functions at its maximum throughput to meet the target

query demand. However, this assumption may not always be valid

due to the dynamic nature of query arrivals during runtime. The

method by which queries are routed and executed can significantly

affect both the quality of their responses and their capacity to ad-

here to predetermined latency deadlines.

Our approach. We present a greedy request routing algorithm

in Section 5 that routes requests in a way that maximizes system

accuracy. To minimize SLO violations, we perform a runtime op-

timization to drop requests that are unlikely to meet their SLOs,

in order to free up resources for requests with higher chances of

meeting their SLOs.

3 SYSTEM ARCHITECTURE OF LOKI
We now present an overview of Loki’s system architecture and

provide more details in Sections 4 and 5. Figure 4 shows the three

key components: Controller, Frontend, and Workers.

Controller. The Controller is responsible for managing the

resources in the system and for routing the queries. It uses the

following sub-components to achieve this.
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Resource Manager. The Resource Manager performs resource

allocation periodically in response to the incoming demand to in-

dicate which model variants to host, as well as their replication

factors and maximum batch sizes. It consults the Metadata Store

to get the historical query demand, the pipeline graph, and the

profile of model variants for each task in the graph to perform the

allocation. Once the Resource Manager obtains an allocation plan,

it adjusts the allocation of workers to model variant instances in the

system to reflect the new allocation plan. The Resource Manager

assumes a finite-size cluster for allocation. As long as it can meet

demand using the highest accuracy model variants for each task

in the pipeline, it tries to scale the hardware needed to serve the

demand. If the demand cannot be met even using the entire cluster,

it drops accuracy to meet the increased demand. We explain the

details of the resource allocation algorithm in Section 4.

Load Balancer. The Load Balancer is tasked with routing the

queries through the hosted instances to maximize system accuracy.

It uses the resource allocation plan set up by the Resource Man-

ager as well as the pipeline graph and real-time demand from the

Metadata Store to perform the routing. It sets up routes from the

Frontend to the first-task workers of the pipeline, as well as the

routes between intermediate workers.

Model Profiler. The Controller uses the Model Profiler to profile

the expected processing times of each model variant in the pipeline

with different batch sizes during the initial setup. The profiles are

then stored in theMetadata Store and used by the ResourceManager

every time it performs resource allocation.

Metadata Store. The Metadata Store holds the information re-

quired by the Resource Manager and Load Balancer. It stores the

representation of the pipeline as a graph, the profiled throughput

and accuracy of each model variant, and the profiled end-to-end

accuracy of each source-to-sink path through the graph. During

the initial setup, a pipeline graph, the model variants for each node

in the graph, and the end-to-end pipeline latency requirement are

registered in the Metadata Store.

Frontend. The Frontend accepts queries from the client and for-

wards them to the respective workers. The query is then forwarded

by those workers to intermediate workers in the pipeline, and the

workers at the last task of the pipeline return the results to the

Frontend which then returns the results to the client. The Frontend

also records the incoming demand into the system and reports it to

the Controller which stores it in the Metadata Store.

Workers. The workers host the model variants and execute

inference queries. Each worker has a queue that it uses to form

batches. As the worker executes queries, it records the number of

subsequent requests generated for downstream tasks in terms of

a multiplicative factor on the incoming number of requests and

reports it to the Controller using heartbeat messages.

Query Processing. Clients interact with Loki in the follow-

ing way. Client sends a query to the Frontend of Loki ( 1 ). The

Frontend routes the query to one of first-task workers ( 2 ). The

first-task worker passes the intermediate query (or queries) to one

(or more) second-task worker ( 3 ) and so on. The last-task worker

(or workers) pass the inference results to the Frontend ( 4 ). The

Frontend aggregates the results and returns them to the client ( 5 ).

We now provide details of the two core modules: the Resource

Manager and the Load Balancer in Sections 4 and 5 respectively.

4 RESOURCE MANAGER
The Resource Manager is tasked with allocating resources in the

system to meet the incoming demand. It uses the incoming demand

as input and outputs the resource allocation plan that describes

the model variants to host as well as the replication factor and the

maximum batch size that can be used for each model variant by

performing the following two steps.

(1) Hardware scaling. The Resource Manager first tries to

serve the incoming demand with the minimum number of

workers by using the most accurate model variants for each

task in the pipeline. If this is not possible, it executes the

accuracy scaling step below.

(2) Accuracy scaling. If the Resource Manager is unable to

meet demand by using the entire cluster with the most ac-

curate model variants, it tries to determine the minimum

amount of system accuracy to sacrifice in order to meet the

demand. This enables the Resource Manager to increase the

throughput capacity of the cluster, allowing it to serve a

greater demand compared to using hardware scaling alone.

Each of the above steps is modeled as a mixed-integer linear

program (MILP) as described below. The MILPs are solved by the

Resource Manager to get the resource allocation plan.

4.1 MILPs for hardware and accuracy scaling
We now formulate the resource allocation problem as a mixed in-

teger linear programming (MILP) optimization. We first elaborate

the input and the output of the optimization problem and then

introduce the performance models that quantify the relationship

between a resource allocation plan and system accuracy, latency,

and throughput. Table 1 summarizes the notation used in the opti-

mization.

Inputs. We are given as input the pipeline graph consisting

of a set of tasks 𝑇 and a set of directed edges 𝐸 where an edge

𝑒 = (𝑖, 𝑗) ∈ 𝐸 denotes an edge from the 𝑖th task 𝑡𝑖 to the 𝑗 th task 𝑡 𝑗 .

The pipeline graph is a directed rooted tree with the source node

(𝑡1) as the root which does not have any incoming edges. We are

also given the incoming demand of the system, 𝐷 , that arrives at

the root. Let 𝑟 (𝑖, 𝑘) represent the multiplicative factor of the 𝑘th

model variant of task 𝑡𝑖 ∈ 𝑇 .
Output. The output is the resource allocation plan, defined by

the two optimization variables: 𝑥 (𝑖, 𝑘) and 𝑦 (𝑖, 𝑘), representing the

number of instances to host for the 𝑘th model variant of task 𝑡𝑖 ∈ 𝑇
along with the maximum batch size to use for it, respectively.

Meeting the system throughput demand. To model how an

allocation plan affects the system throughput, we need to introduce

two concepts: augmented graph, and intermediate query demand.

Augmented graph. The augmented graph aims to represent all

possible materializations of a pipeline graph using different combi-

nations of model variants for each task. We construct an augmented

graph from the given pipeline graph in the following way: For ev-

ery vertex 𝑖 in the pipeline graph that represents the 𝑖th task 𝑡𝑖 , we

create vertices (𝑖, 𝑘) in the augmented graph representing the 𝑘th

model variant of task 𝑡𝑖 . We add a directed edge from a vertex (𝑖, 𝑘)
to ( 𝑗, 𝑘′) in the augmented graph if (𝑖, 𝑗) is an edge in the pipeline

graph, for all 𝑘, 𝑘′.
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Subscripts

𝑇 the set of tasks

𝑡𝑖 the 𝑖th task in the pipeline, 𝑡𝑖 ∈ 𝑇
𝑉𝑖 the set of model variants for the 𝑖th task

𝑣𝑖,𝑘 the 𝑘 th model variant for the 𝑖th task, 𝑣𝑖,𝑘 ∈ 𝑉𝑖
𝐸 the set of edges between tasks in the pipeline graph

𝑃 the set of all root-to-sink paths in the augmented graph

𝐵 the set of allowed batch sizes

𝑏 batch size, 𝑏 ∈ 𝐵
Inputs

𝐷 incoming demand (QPS)

𝑆 number of workers in the cluster

𝐿 latency SLO of the pipeline

𝑟 (𝑖, 𝑘 ) multiplicative factor for the 𝑘 th model variant of 𝑖th task

𝑞 (𝑖, 𝑘,𝑏 ) profiled throughput (QPS) for the 𝑘 th model variant of the

𝑖th task with batch size 𝑏

𝐴(𝑣𝑖,𝑘 ) profiled accuracy of the 𝑘 th model variant of the 𝑖th task

𝐴̂(𝑝 ) end-to-end profiled accuracy of path 𝑝

Optimization variables

𝑥 (𝑖, 𝑘 ) number of instances for the 𝑘 th model variant of the 𝑖th

task

𝑦 (𝑖, 𝑘 ) maximum batch size to use for the 𝑘 th model variant of

the 𝑖th task

Intermediate variables

𝑐 (𝑝 ) ratio of queries supported through path 𝑝

𝐼 (𝑝 ) 1 if there is any traffic through the path 𝑝 ; 0 otherwise

𝑙 (𝑖, 𝑘 ) the processing latency of the 𝑘 th model variant of the 𝑖th

task with the configured batch size

ˆ𝑙 (𝑝 ) end-to-end latency through path 𝑝

Table 1: Notation for MILP

Intermediate query demand. The Resource Manager not only

needs to host enough model instances to serve the incoming queries

at the first task of the pipeline, but it also needs to consider the

intermediate queries generated by the initial tasks to host model

instances for the downstream tasks in the pipeline. For example, an

object detection model in the traffic analysis pipeline may detect

10 cars in an image, creating 10 intermediate queries to be served

by the car classification model. Therefore, it needs estimates of the

multiplicative factor for each model variant. The Resource Manager

uses the estimate of incoming demand into the system as well as

the profiled multiplicative factor of each model variant to estimate

the intermediate query demand.

We next model the requirement that model variants chosen

for a task need to meet the task’s intermediate query demand in

Constraint 2. For every model variant 𝑣𝑖,𝑘 , we want to ensure that it

has enough resources to serve all requests arriving at it. To get the

number of requests arriving at 𝑣𝑖,𝑘 , we need to consider all paths

that contain it. Let 𝑃 ′
𝑖,𝑘

be the set of all paths 𝑝 that start at a vertex

that corresponds to the root and end in vertex (𝑖, 𝑘) that represents
model variant 𝑣𝑖,𝑘 . For 𝑝 ∈ 𝑃 ′𝑖,𝑘 , let𝑚(𝑝, 𝑖, 𝑘) represent the number

of requests derived from a single request entering path 𝑝 that reach

𝑣𝑖,𝑘 . Thus, the following holds.

𝑚(𝑝, 𝑖, 𝑘) =
∏

(𝑖′,𝑘 ′ ) ∈𝑝
𝑟 (𝑖′, 𝑘′) (1)

We now ensure that 𝑣𝑖,𝑘 has enough resources to serve all re-

quests going through it. Let 𝑃 be the set of all paths in the aug-

mented graph that start at a vertex that corresponds to the root

and end at a vertex that corresponds to a sink. Let 𝑃𝑖,𝑘 be the set

of all paths 𝑝 ∈ 𝑃 that include vertex (𝑖, 𝑘) that represents model

variant 𝑣𝑖,𝑘 . As the total number of requests per second entering

the pipeline is 𝐷 and 𝑐 (𝑝) is the ratio of these requests that we

route through the path 𝑝 , the number of requests that arrive at 𝑣𝑖,𝑘
after multiplication are

∑
𝑝∈𝑃𝑖,𝑘 𝐷 · 𝑐 (𝑝) ·𝑚(𝑝, 𝑖, 𝑘). Then, to ensure

𝑣𝑖,𝑘 has enough resources to serve all the requests going through it,

we add the following constraint.∑︁
𝑝∈𝑃𝑖,𝑘

𝐷 · 𝑐 (𝑝) ·𝑚(𝑝, 𝑖, 𝑘) ≤ 𝑥 (𝑖, 𝑘) · 𝑞(𝑖, 𝑘,𝑦 (𝑖, 𝑘)) ∀𝑣𝑖,𝑘 ∈ 𝑉𝑖 ,∀𝑡𝑖 ∈ 𝑇

(2)

We require that the number of workers used may not exceed the

total available workers in the cluster.∑︁
𝑖,𝑘

𝑥 (𝑖, 𝑘) ≤ 𝑆 (3)

Meeting the latency SLO.Wenowmodel how a resource alloca-

tion plan affects the end-to-end pipeline latency, which is bounded

by the SLO requirements of queries. The maximum batch size is

bounded by the latency requirements of requests and also the largest

batch size feasible on a specific device. We configure the maximum

batch size using one of the batch sizes from the set of allowed

batch sizes (Constraint 4). The processing latency of a model vari-

ant depends on the maximum batch size configured for it and the

throughput of the model using that batch size (Constraint 5).

𝑦 (𝑖, 𝑘) ∈ 𝐵 ∀𝑣𝑖,𝑘 ∈ 𝑉𝑖 ,∀𝑡𝑖 ∈ 𝑇 (4)

𝑙 (𝑖, 𝑘) = 𝑦 (𝑖, 𝑘)
𝑞(𝑖, 𝑘,𝑦 (𝑖, 𝑘)) ∀𝑣𝑖,𝑘 ∈ 𝑉𝑖 ,∀𝑡𝑖 ∈ 𝑇 (5)

We define the end-to-end processing latency through a path 𝑝

as following.

ˆ𝑙 (𝑝) =
∑︁
(𝑖,𝑘 ) ∈𝑝

𝑙 (𝑖, 𝑘) ∀𝑝 ∈ 𝑃 (6)

As we need to meet the end-to-end latency SLO of the pipeline,

we need to ensure that the processing latency through each path

serving any query is less than the SLO.

ˆ𝑙 (𝑝) · 𝐼 (𝑝) ≤ 𝐿 ∀𝑝 ∈ 𝑃 (7)

To account for the waiting time of queries in the queue, we divide

the SLO by two. This is motivated by an observation from prior

work [5, 36]: a query that arrives right after a batch starts execut-

ing needs to wait for the current batch to finish, before starting

execution with the next batch and thus may have to wait twice the

amount of processing time of a batch. Based on this, we divide the

SLO by two, assuming that the query’s waiting time in the queue

is as long as the query’s execution time.

Modeling the system accuracy. As mentioned in Section 2.2.1,

the model variants chosen at each task of the pipeline affect the
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end-to-end accuracy. Therefore, to capture this accuracy, we profile

the end-to-end accuracy of every path 𝑝 ∈ 𝑃 as 𝐴(𝑝). Given that

the optimization configures the ratio of requests through the path

𝑝 to be 𝑐 (𝑝), the system accuracy is

∑
𝑝∈𝑃 𝑐 (𝑝) · 𝐴(𝑝).

The MILP optimization.We now present the MILP optimiza-

tion for both hardware and accuracy scaling based on the above-

mentioned performance models.

Step 1: Hardware scaling. We first try to serve demand using

the most accurate model variant for each task. To achieve this,

we constrain the number of hosted instances for all other model

variants to be 0. Let us denote the most accurate model variant for

the task 𝑡𝑖 as:

𝑣𝑚𝑎𝑥
𝑖 = argmax

𝑣𝑖,𝑘 ∈𝑉𝑖
𝐴(𝑣𝑖,𝑘 ) ∀𝑡𝑖 ∈ 𝑇 (8)

Then we can denote the set of all other model variants as:

𝑉𝑖 = {𝑣𝑖,𝑘 ∈ 𝑉𝑖 |𝐴(𝑣𝑖,𝑘 ) < 𝐴(𝑣𝑚𝑎𝑥
𝑖 )} ∀𝑡𝑖 ∈ 𝑇 (9)

We can now define the constraint to disallow less accurate model

variants as following.

𝑥 (𝑖, 𝑘) = 0 ∀𝑣𝑖,𝑘 ∈ 𝑉𝑖 ,∀𝑡𝑖 ∈ 𝑇 (10)

In this case, the optimization objective is to minimize the number

of workers used to serve the demand.

𝑚𝑖𝑛
∑︁
𝑖,𝑘

𝑥 (𝑖, 𝑘) s.t. Constraints 1-10 hold (11)

It is important to note that it may not be possible to serve demand

with the highest accuracy model variants by using even the entire

cluster. In this case, the above optimization will immediately detect

the constraints to be infeasible, and we resort to accuracy scaling.

Step 2: Accuracy scaling. The optimization objective for accuracy

scaling is to maximize the system accuracy, which is the average

accuracy experienced by all queries served by the system. The sys-

tem accuracy is measured by multiplying the end-to-end accuracy

of each path by the ratio of queries flowing through it.

𝑚𝑎𝑥
∑︁
𝑝∈𝑃

𝑐 (𝑝) · 𝐴(𝑝) s.t. Constraints 1-7 hold (12)

4.2 Solving the MILP
As the Resource Manager is invoked periodically to respond to

long-term changes in demand, it can tolerate a higher runtime

from considering a large number of paths through the pipeline, as

long as it yields an optimal solution at the end. For the purpose

of our experiments, we use a 10-second invocation interval for

the Resource Manager. We show in Section 6.5 that the runtime

overhead of the MILP is low enough to allow it to adapt reasonably

quickly to this invocation frequency. Additionally, the Resource

Manager may reallocate resources if it detects a significant change

in the demand between its periodic invocations. To estimate the

demand to serve, we use an exponentially weighted moving average

on the recent demand history.

Latency budgets for tasks. The batch sizes set by the MILP

not only serve as guidance for the workers to form batches during

execution, they also allow us to set latency budgets for each task.

Since the optimization ensures that the execution latency through

every path falls under the SLO using the configured batch sizes, we

use the execution time of a model variant with the configured batch

size as the latency budget for its task. These latency budgets are

useful during query execution to make sure requests are on track

to meet their SLOs as they move through the tasks in the pipeline.

In case they fall behind, we can use the latency budgets to perform

early dropping of requests as we detail in Section 5.2.

Communication latency. It is important to consider the com-

munication latency between workers since the end-to-end execu-

tion latency of a query depends on the communication latency

between the workers that serve that particular query. As we con-

sider all servers to be in the same cluster, we assume communication

latency between any pair of servers to be homogeneous. Therefore,

during resource allocation, we subtract the product of the total

number of servers in the path with this communication latency

from the latency SLO of the pipeline.

Estimating multiplicative factors. As mentioned before, each

request generates multiple requests for downstream tasks in the

pipeline. We refer to the number of outgoing requests generated

for each incoming request as the multiplicative factor. We note

that every model variant can have a different multiplicative factor,

for example, extending the example from above, a lower accuracy

object detection model such as YOLOv5n may detect fewer cars

in an image compared to a higher accuracy model variant such

as YOLOv5x. Each model variant hosted at a worker records the

multiplicative factors it observes when serving queries and reports

them to the Controller through heartbeat messages. The Controller

aggregates these for each model variant to be used by the Resource

Manager.

5 LOAD BALANCER
The Load Balancer produces the routing tables that enable each

query to be routed through a sequence of model variants in real-

time to maximize system accuracy and reduce SLO violations. To

achieve this, it takes as input the resource allocation plan produced

by the ResourceManager, the pipeline graph, and the recent demand

history from the Metadata Store, and outputs routing tables for both

the Frontend and workers.

The Load Balancer is a centralized component and periodically

updates the routing tables of workers, while the workers use their

respective routing tables during real-time execution to find down-

streamworkers for intermediate requests.We present our algorithm

in this section and explore the overhead of the Load Balancer in

Section 6.5.

5.1 Request Routing
We now present our request routing algorithm, MostAccurate-

First (Algorithm 1). The algorithm works in the following way:

Starting from the root node of the pipeline graph, it takes the

incoming QPS of the node and assigns model variants to it in non-

increasing order of their profiled single-model accuracies. As each
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model variant can have a different multiplicative factor, the outgo-

ing requests for this node are calculated by multiplying the requests

assigned to each model variant by the multiplicative factor of that

variant. The outgoing requests are sent to the children nodes, and

we recursively repeat the same procedure on each of the children.

MostAccurateFirst generates routing tables based on estimated

demand and updates the routing tables of all the workers and the

Frontend.

Algorithm 1

1: procedureMostAccurateFirst(pipelineGraph, worker meta-

data)

2: sortedGraph← TopologicalSort(pipelineGraph)

3: routingTables← 𝜙

4: for task in sortedGraph do
5: workers← sort(task.workers) ⊲ By single-model accuracy

6: for worker in workers do
7: workerTable← 𝜙

8: for child in task.children do
9: outgoing ← worker.incoming * task.multFactor *

child.branchRatio

10: totalChildDemand← outgoing

11: childWorkers← sort(child.workers)

12: for cWorker in childWorkers do
13: if cWorker.capacity > 0 & outgoing > 0 then
14: routed← min(outgoing, cWorker.capacity)

15: routingProbability← routed / totalChildDemand

16: workerTable.addEntry(cWorker, routingProbability)

17: outgoing← outgoing − routed

18: cWorker.capacity← cWorker.capacity − routed

19: cWorker.incoming← cWorker.incoming + routed

20: routingTables[worker]← workerTable

21: return routingTables

The Load Balancer runs the MostAccurateFirst algorithm ev-

ery time the Resource Manager changes the resource allocation

plan. It also runs periodically between successive invocations of the

Resource Manager. On each execution, the MostAccurateFirst

algorithm produces routing tables for every worker and pushes

the routing tables to the respective workers. The workers then use

their routing tables during real-time query execution to find down-

stream workers to forward intermediate queries. Since we saturate

workers for each node in non-increasing order of their single-model

accuracies, we may have some workers for each node with left-

over capacity. We make a list of these workers along with their

leftover capacities and propagate this list to their upstream workers.

The upstream workers can use this list to perform Opportunistic

Rerouting, a technique we describe in Section 5.2.

As the end-to-end pipeline accuracy is a monotonic function of

single-model accuracies, and MostAccurateFirst ensures that

each node in every source-to-sink path in the pipeline graph gets

the highest single-model accuracy for a given QPS, this means

MostAccurateFirst maximizes the end-to-end pipeline accuracy.

5.2 Early dropping with opportunistic rerouting
The Resource Manager and Load Balancer assess the recent demand

history of the system to allocate resources and set up routing for

future requests. However, real-time demand can deviate from these

estimates. Moreover, the estimates are made at the granularity

of seconds, while request arrivals and multiplicative factors may

fluctuate at smaller timescales between these estimates. Due to these

reasons, there is a possibility that some requests may exceed their

SLOs despite provisioning the system to prevent SLO violations.

In such instances, it may be more effective to preemptively drop

a request if we can anticipate that it is likely to miss its SLO. This

decision can only be made at runtime during query execution at

individual workers. We refer to this process as early dropping, and
it can mitigate SLO violations by freeing up resources for requests

that are expected to meet their SLOs.

Since requests undergo execution sequentially through the tasks

within the pipeline, we use the latency budget of each task to

estimate whether a request is on track to meet its SLO. Recall that

we set the latency budget of each task by using the batch sizes set

by the Resource Manager for each hosted model variant.

We consider two naïve mechanisms to perform early dropping

using the allocated latency budgets for the pipeline tasks:

(1) Per-task dropping. When a request finishes execution at a

given task, we note the total time spent by the request at the

task, i.e., the processing time of the request as well as the

time it spent waiting in the queue. If this time exceeds the

latency budget assigned for the given task, we estimate that

the request is likely to miss its end-to-end SLO since the SLO

is divided into latency budgets for individual tasks by the

Resource Manager. Therefore, one possible mechanism is to

drop the request early on in order to free up resources for

requests that are more likely to meet their end-to-end SLOs.

Per-task dropping tracks the request at every task during its

execution and drops it if it misses the latency budget for any

task along the path. However, it is important to note that

this approach might be overly aggressive, as a request that

exceeds its latency budget for an earlier task may still have

the potential to meet the end-to-end SLO by compensating

at a subsequent task.

(2) Last-task dropping. This mechanism does not drop any

request up until the last task, even if it exceeds its per-task

latency budget at earlier tasks. When the request reaches the

last task and its leftover latency budget is smaller than the

expected processing time, the request is then dropped. While

this approach is more conservative than per-task dropping,

it carries the risk of tying up resources at upstream tasks for

requests that may ultimately be dropped later.

Opportunistic rerouting. To strike a balance between the

above-mentioned extreme approaches, we introduce a novel mech-

anism for early dropping termed Opportunistic Rerouting. This ap-
proach involves intelligently redirecting requests that are running

behind if there is a chance for them to meet their latency SLOs.

Opportunistic rerouting navigates the tradeoff between being

overly aggressive or conservative. The key idea is that if a request

exceeds its latency budget at any given task, we try to find a faster

alternative path for the subsequent task in order to make up for it.
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We accomplish this as follows. Suppose a request exceeds the

latency budget for the given task by 𝑥 amount of time, indicating

the time we need to make up. Once the request completes its ex-

ecution at the given worker, we identify the downstream worker

to forward the request using the routing table, following our stan-

dard procedure. Let us denote the profiled execution time of this

downstream worker as 𝑦. To compensate for the 𝑥 time deficit, we

need to find a downstream worker capable of executing within

𝑦 −𝑥 time to offset the exceeded budget for this task. As mentioned

in Section 5.1, the Load Balancer propagates a backup table to all

workers, listing downstream workers with leftover capacities. We

scan this table for a worker whose profiled execution time is at

most 𝑦 − 𝑥 . If there are multiple such workers, we select the one

with the highest accuracy. If there is still a tie, we break it randomly.

If no such worker can be found, we drop the request. Note that this

entire process takes place in real-time at individual workers during

query execution.

Opportunistic rerouting reduces SLO violations by preemptively

saving requests from missing their SLOs and trading off accuracy

for SLO fulfillment. We compare opportunistic rerouting with the

naïve early dropping techniques mentioned above to study its per-

formance benefits in Section 6.3.

6 EMPIRICAL EVALUATION
We now present our prototype implementation, experimental setup,

and our empirical results.

6.1 Experimental setup
Implementation:We implement Loki in∼8K lines of Python code

5
.

We use ONNX runtime [12] with the CUDA execution provider to

host the host the models on GPUs for efficient inference. We use

Gurobi [18] to solve our MILP optimization. Our cluster consists of

20 NVIDIA GTX 1080 Ti GPU workers.

We extend the discrete-event simulator from [5] to evaluate our

system on a wide range of system parameters. This approach aligns

with established practices in the field, as DNN inference is known

for its high determinism [14, 44]. Previous works (e.g., [5, 29]),

typically conduct a core set of experiments on an actual cluster and

then compare the results obtained obtained from the cluster with

those from simulation to demonstrate the quantitative differences.

They then utilize simulation to investigate the impact of a wide

range of parameters on the performance of the system. In line with

this methodology, we also use our simulator to explore a broad

range of parameters and their effects on our system’s performance.

Pipelines:We consider two types of pipelines in our evaluation,

both shown in Figure 2:

• Traffic analysis. It first detects the objects in the video frames

and then runs fine-tuned car classification or facial recogni-

tion models on the detected car and person objects, respec-

tively. We use YOLOv5 [24] as the object detection model,

EfficientNet [38] for car classification, and VGG [8] for facial

recognition.

• Social media. The social media pipeline detects objects in

images and generates suggested captions for the images. It

5
Our code is available at https://github.com/UMass-LIDS/Loki

uses ResNet [20] for image classification and CLIP-ViT [31]

for image captioning.

We use a total of 32 model variants in our evaluation across the

two pipelines. We normalize the accuracy of each model variant in

a model family by the accuracy of its most accurate variant.

Datasets:We use two input datasets.

• Traffic data.We use a single day from the Microsoft Azure

functions trace [35] for query arrivals to drive load for the

traffic analysis pipeline. We use shape-preserving transfor-

mations to scale the trace in a way that it matches the capac-

ity of our cluster. Since this trace only contains aggregated

information of request arrivals but no request content, we

use images from the Bellevue traffic dataset [6] as the request

content to perform inference and generate intermediate re-

quests for subsequent tasks.

• Social media. We use the Twitter trace [1] used by prior

inference serving systems [5, 33] to drive load for the social

media pipeline. However, as the Twitter trace also contains

only aggregated information about request arrivals but not

request content, we use images from the MS-COCO captions

dataset [9] as the content for the requests.

Evaluation metrics: We define metrics to evaluate our system.

(1) System accuracy is the average accuracy experienced by all

requests served by the system.

(2) Cluster utilization indicates the ratio of workers used at any

given time to the total number of workers in the cluster.

(3) SLO violation ratio indicates the ratio of requests that miss

their SLOs.

Note that a request could miss its SLO in two ways: (i) it finishes

past its SLO, (ii) it gets dropped preemptively by the system. In

both cases, the system is unable to fulfill the request

Baselines for comparison: We compare Loki, the first sys-

tem capable of performing pipeline-aware hardware and accuracy

scaling, against two approaches.

• InferLine [10] is a pipeline-aware, but accuracy-agnostic in-
ference serving system. It can perform hardware scaling but

requires the clients to specify a single model variant to use

for each task in the pipeline and does not support switching

between model variants.

• Proteus [5] is an inference serving system that can scale

accuracy for single models but is pipeline-agnostic. We set it

up to serve inference pipelines by letting it handle each task

in the pipeline independently, i.e., it scales accuracy for each

task independently since it is unaware of the dependencies

between them.

6.2 Performance comparison
We present an end-to-end comparison of the system performance

of Loki against the baselines on the two representative pipelines.

Traffic analysis pipeline.We first study the end-to-end perfor-

mance of the traffic analysis pipeline. Figure 5 shows the timeseries

of the trace demand, the system accuracy for each approach, the

percentage of workers used in the cluster, and the SLO violation

ratio. For this experiment, we use an end-to-end pipeline latency

https://github.com/UMass-LIDS/Loki
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SLO of 250ms. We explore the sensitivity of the system to different

SLO values in Section 6.4.

We show the point when Loki shifts between hardware scaling

and accuracy scaling with the help of the dotted vertical lines.

InferLine offers low SLO violations during the hardware scaling

phase, but since it is not capable of performing accuracy scaling, its

SLO violations shoot up during that time and it is not able to meet

the increased demand. Therefore, compared to InferLine which

performs hardware scaling alone, Loki effectively increases the

capacity of the cluster by 2.5×.
Proteus consistently suffers from high SLO violations due to

the fact that it is not pipeline-aware and manages each task in the

pipeline graph independently. Therefore, Proteus is not able to iden-

tify the dependencies between the tasks to match the throughput

of different tasks, leading to the creation of throughput bottle-

necks. Therefore, Loki reduces SLO violations by 10× compared to

a pipeline-unaware accuracy scaling approach such as Proteus.

As Loki performs accuracy scaling in a pipeline-aware manner,

it is also able to achieve higher system accuracy than Proteus since

the latter may drop accuracy for a task that may lead to a higher

drop in end-to-end accuracy, while Loki uses the knowledge of

end-to-end accuracies to drop minimal accuracy.

Lastly, during off-peak times, Loki can leverage hardware scaling

to reduce cost and energy by allowing the system to shut down

servers that are not needed. Compared to Proteus which uses the en-

tire cluster throughout since it does not perform hardware scaling,

Loki reduces the number of servers needed to serve the demand,

and consequently server cost, by up to 2.67×.
To summarize, Loki offers consistently lower SLO violations due

to its pipeline-aware resource allocation. It increases the effective

capacity of the cluster by 2.5× in this experiment, and can shut off

servers to save cost and energy during off-peak times.

Validating the simulator. We conduct this experiment on our

simulator as well to validate it and observe an average difference

of 1.2% in accuracy, 1.8% in the SLO violation ratios, and 1.5% in

the number of servers used. We note that the simulation results are

close to the prototype results, and the differences are produced due

to various factors such as small variances in model execution times

and unexpected network delays. However, due to the deterministic

nature of ML inference and this small difference, we use our simu-

lator to conduct the remaining experiments in order to evaluate the

system under a wide range of conditions and parameters. For the

rest of this Section, we present results from our simulation unless

otherwise noted.

Social media pipeline. We now present the end-to-end per-

formance comparison on the social media pipeline in Figure 6. As

before, we show the incoming demand into the system, the system

accuracy offered by the different approaches, cluster utilization,

and SLO violation ratio.

We observe similar trends as in the traffic analysis pipeline.When

demand increases to the point where hardware scaling is not able

to meet it, the SLO violations of InferLine shoot up to more than 5×
of Loki. During this time, Loki is able to meet demand by sacrificing

∼10% accuracy.

During off-peak times, Loki again uses about 2.67× less servers

than Proteus which does not perform any hardware scaling. Loki

also drops up to 20% less accuracy than Proteus due to the ability of

2.5x

Figure 5: End-to-end comparison on the traffic analysis
pipeline. Dotted vertical lines show transition between hard-
ware and accuracy scaling. Loki achieves an increase of 2.5×
in effective capacity compared to InferLine that performs
hardware scaling alone and reduces SLO violations by up to
10× compared to Proteus that performs pipeline-unaware
accuracy scaling.

the former to identify pipeline dependencies and their effect on end-

to-end accuracy of the pipeline. Proteus continues to suffer from

high violations again due to being pipeline-unaware. Loki increases

the effective capacity of the cluster by 2.7× in this experiment.

6.3 Ablation study of the load balancer
We now take a deep dive into the request routing performed by

the Load Balancer to understand where the performance benefits

come from. Figure 7 shows the benefit achieved from the use of

early dropping and opportunistic rerouting by comparing it against

simpler versions as follows.

(1) No early dropping: This is the simplest version which does

not perform any early dropping and follows the original

routing plan.

(2) Last-task dropping: This version drops requests if they are

expected to miss their SLOs, but only at the last task of the

pipeline.

(3) Per-task early dropping: This version performs early dropping

of requests at each task if they miss the assigned latency

budget of that task.

(4) Early dropping with opportunistic rerouting: This is the full-
fledged version of our approach that we use in our end-to-

end implementation. It first tries to re-route requests through

faster paths if they are expected to miss their SLO using the

assigned path, and drops them if this is not possible.
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2.7x

Figure 6: End-to-end comparison on the socialmedia pipeline.
Dotted vertical lines show transition between hardware and
accuracy scaling. Loki achieves an increase of 2.7× in effective
capacity compared to hardware scaling alone and reduces
SLO violations by up to 10× compared to pipeline-unaware
accuracy scaling.
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Figure 7: Ablation study of the load balancer shows that op-
portunistic rerouting has the most impact on SLO violations.

We observe that the version without any early dropping suf-

fers from the highest SLO violations as it can waste resources on

requests that are not on target to meet their SLOs, hence delay-

ing and potentially timing out other requests as well. Last-task

dropping improves SLO violations slightly by dropping requests if

they are expected to miss SLOs, but since it only does this at the

last task, it can be overly conservative in doing so and still suffers

from high SLO violations. We observe that per-task early dropping

improves performance further by dropping requests at each task if

they are expected to miss the latency budget for the respective task.
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Figure 8: Effect of varying SLOs on Loki

However, this approach may drop requests too aggressively since a

request that misses its latency budget for an earlier task may still

potentially catch up at a later task.

Our approach, which opportunistically reroutes requests that are

falling back to faster paths, minimizes SLO violations the most. If

such rerouting is not possible, it means that the request has no way

of meeting its SLO even if routed through the fastest path available.

In this case, it drops the requests as a last resort in order to free

up resources for other requests that may have a better chance of

meeting their SLOs.

6.4 Effect of SLOs on system performance
We study the effect of varying the latency SLOs for the traffic

analysis pipeline on the performance of Loki. To summarize the

results from a large number of experiments, Figure 8 shows the

following key metrics: (i) the average system accuracy across the

entire experiment, (ii) the maximum accuracy drop, and (iii) the

average SLO violation ratio. The maximum accuracy drop is the

degradation in system accuracy from its highest possible value at

peak demand.

We observe a general trend that performance improves sharply

with initial increments of 50 milliseconds, but there are diminishing

improvements in performance as we use larger values of SLO. This

is because the optimization can use several knobs to meet tighter

SLOs: (i) creating more replicas of model instances, (ii) decreasing

the batch size of models in the path to lower end-to-end latency, and

(iii) lowering accuracy by changing the model variant. Note that

the Resource Manager can only increase the replication factor up

to the point where the entire cluster is allocated, and the minimum

batch size it can use is 1. Starting from 400 milliseconds, as the

latency SLO gets tighter, the system can first respond by using

these knobs without sacrificing any accuracy. However, when the

system faces even tighter latency SLOs, once it exhausts these

options, the system is compelled to resort to accuracy scaling to

meet SLOs. This results in a decrease in overall system accuracy

and leads to SLO violations due to the overhead associated with

swapping model variants.

Below 200 milliseconds, the system cannot serve the demand

even with the maximum degree of hardware and accuracy scaling

because the sum of processing latencies across the entire pipeline

of even the lowest accuracy model variants with a batch size of 1

exceeds this value of SLO.

6.5 Runtime performance
We now explore the runtime performance of both the core compo-

nents of our system: the Resource Manager and Load Balancer.
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ResourceManager.Given that the Resource Manager considers

all paths through the pipeline and yields an optimal solution by

solving an MILP, it is expected to run orders of magnitude slower

than the Load Balancer. We measure the average runtime of the

MILP to be ∼500 milliseconds. As the Resource Manager is invoked

periodically to adapt to long-term fluctuations in demand and does

not lie on the critical path of query execution, the observed runtime

allows for a reasonably swift adaptation of resource allocation in

response to changing demands.

Load Balancer As the Load Balancer reacts to run-time changes

in demand, it needs to respond much faster than the Resource

Manager. In our experiments, we measure the average runtime of

the load balancer to be ∼0.15 milliseconds. We attribute the fast

runtime of the Load Balancer to the efficiency of our request routing

algorithm presented in Section 5.1.

7 RELATEDWORK
Inference serving is quickly becoming a hot topic of research. Rep-

resentative production systems include TensorFlow-Serving [30],

NVIDIA Triton Inference Server [3] and Amazon SageMaker [2].

Inference serving has also been extensively studied through re-

search prototypes as well, such as Clipper [11], INFless [45], and

PRETZEL [25]. These systems aim to provide a unified abstraction

to the user to hide details of the underlying ML frameworks, data

pre-processing, and performance optimization. Unlike these sys-

tems that require users to manage DNN models, Loki automatically

configures the suitable DNN models to execute on GPU clusters.

The closest works to Loki are Proteus [5] and InferLine [10]. Pro-

teus presents an inference serving system that can scale accuracy

for single models but is pipeline-agnostic. It scales accuracy for

each task in the pipeline independently since it is unaware of the

dependencies between them. InferLine is a pipeline-aware infer-

ence serving system that minimizes the cost of inference serving

by scaling the hardware in response to changes in demand.

INFaaS [33], Sommelier [17], and Tolerance Tiers [19] are also

related as they also consider model variants with different accuracy-

latency profiles in model serving systems. INFaaS [33] presents a

model-less inference serving system that automates the selection

of model variants for each query to minimize cost while meeting

accuracy and latency requirements. Unlike Loki that explicitly op-

timizes accuracy as an objective, it treats accuracy as a constraint

and focuses on hardware scaling to handle variable demands. Som-

melier [17] is a model repository that can interface with inference

serving systems to suggest model variants with lower accuracy to

handle increases in load. Tolerance Tiers [19] allows developers to

tradeoff accuracy for latency through programming APIs. However,

it imposes a fundamental limitation on applications, compelling

them to adhere to a single accuracy tier statically throughout the en-

tire inference serving process, lacking the flexibility to dynamically

adjust accuracy as part of a scaling approach.

Many inference serving systems try to optimize the cost of serv-

ing while meeting certain performance constraints. Kairos [28] is

one such system that aims to minimize the cost of inference serv-

ing using heterogeneous cloud resources. MArk [46] and Scrooge

[21] also try to minimize the cost of inference serving while trying

to meet latency SLOs. iGniter [43] is an interference-aware infer-

ence serving system that minimizes serving cost. Cocktail [16] uses

model ensembling to improve accuracy and meet latency require-

ments using minimal cost. Loki instead optimizes both cost and

accuracy by unifying accuracy scaling and hardware scaling.

Some model serving systems propose techniques that can be

combined with accuracy and hardware scaling to improve system

throughput. Rafiki [41] is an analytics serving system that uses

model ensembling during inference to improve accuracy at the cost

of latency. PERSEUS [26] studies the performance and cost trade-

offs associated with multi-tenant model serving. Morphling [40]

presents an algorithmic framework to minimize the cost of search-

ing through possible configurations when setting up inference

services. Clover [27] is an inference serving system that explores

the tradeoff between carbon emissions and accuracy. DeepPlan

[23] minimizes inference latency by exploiting recent advances in

GPU technology to reduce the model loading latencies. SHEPHERD

[48] and Clockwork [15] aim to minimize the tail latency of model

serving by eliminating sources of unpredictability in the system.

There has been a lot of work specifically related to video analytics

pipelines. VideoStorm [47] was the first work to explore the latency-

accuracy tradeoff for the resource provisioning of video analytics

applications that use DNNs. Llama [34] is a serverless framework

for auto-tuning video analytics pipelines. Nexus [36] is another

framework for serving video analytics pipelines on GPU clusters. In

comparison, Loki is a system that is applicable to generic inference

pipelines that can be represented as directed rooted trees (defined

in Section 2.1).

Recent work also explores serving large language models (LLMs),

such as AlpaServe [29] and Tabi [42]. LLM serving is different from

traditional inference serving in the sense that it often requires

partitioning the model to be served by multiple servers. Loki does

not feature optimizations tailored to LLMs but can cater to inference

pipelines with LLMs.

8 CONCLUSION
In conclusion, our work addresses the pressing need for efficient

and cost-effective deployment of machine learning (ML) inference

at the edge. By recognizing the challenge posed by limited edge

resources and the computational demands of ML models, we in-

troduce Loki, a system for resource provisioning of ML inference

pipelines. Central to Loki is the concept of hardware and accuracy

scaling, which dynamically adjusts accuracy levels to manage re-

source constraints when needed, thereby enhancing the effective

capacity of edge clusters and minimizing resource usage during the

off-peak. Our experimental results demonstrate that Loki signifi-

cantly outperforms existing inference serving systems by reducing

Service Level Objective (SLO) violations by up to 10× and increas-

ing the effective capacity by up to 2.7× while sacrificing minimal

accuracy and meeting throughput targets.
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