

 hackney

 v1.25.0

 Table of contents

 	Overview

 	Changelog

 	License

 	Notice

 	
 Modules

 	hackney

 	hackney_app

 	hackney_bstr

 	hackney_cidr

 	hackney_connect

 	hackney_connection

 	hackney_connections

 	hackney_cookie

 	hackney_date

 	hackney_happy

 	hackney_headers

 	hackney_headers_new

 	hackney_http

 	hackney_http_connect

 	hackney_local_tcp

 	hackney_manager

 	hackney_metrics

 	hackney_multipart

 	hackney_pool

 	hackney_pool_handler

 	hackney_request

 	hackney_response

 	hackney_socks5

 	hackney_ssl

 	hackney_stream

 	hackney_sup

 	hackney_tcp

 	hackney_trace

 	hackney_url

 	hackney_util

 hackney - HTTP client library in Erlang

Copyright (c) 2012-2025 Benoît Chesneau.
Version: 1.24.1
hackney
hackney is an HTTP client library for Erlang.
[image: Build Status]
[image: Hex pm]
Main features:
	no message passing (except for asynchronous responses): response is
directly streamed to the current process and state is kept in a #client{} record.
	binary streams
	SSL support
	Keepalive handling
	basic authentication
	stream the response and the requests
	fetch a response asynchronously
	multipart support (streamed or not)
	chunked encoding support
	Can send files using the sendfile API
	Optional socket pool
	REST syntax: hackney:Method(URL) (where a method can be get, post, put, delete, ...)

Supported versions of Erlang are 25.3 and above.
Note: This is a work in progress, see the
TODO for more
information on what still needs to be done.

Useful modules are:
	hackney: main module. It contains all HTTP client functions.

	hackney_http: HTTP parser in pure Erlang. This parser is able
to parse HTTP responses and requests in a streaming fashion. If not set
it will be autodetected if it's a request or a response that's needed.

	hackney_headers Module to manipulate HTTP headers.

	hackney_cookie: Module to manipulate cookies.

	hackney_multipart: Module to encode/decode multipart.

	hackney_url: Module to parse and create URIs.

	hackney_date: Module to parse HTTP dates.

Read the NEWS file
to get the last changelog.
Installation
Download the sources from our Github
repository
To build the application simply run 'rebar3 compile'.
To run tests run 'rebar3 eunit'.
To generate doc, run 'rebar3 edoc'.
Or add it to your rebar config

{deps, [

 {hackney, ".*", {git, "git://github.com/benoitc/hackney.git", {branch, "master"}}}
]}.
Basic usage
The basic usage of hackney is:
Start hackney
hackney is an
OTP
application. You have to start it first before using any of the functions.
The hackney application will start the default socket pool for you.
To start in the console run:

$./rebar3 shell

It is suggested that you install rebar3 user-wide as described here.
This fixes zsh (and maybe other shells) escript-related bugs. Also this should speed things up.

> application:ensure_all_started(hackney).
ok
It will start hackney and all of the application it depends on:

application:start(crypto),
application:start(public_key),
application:start(ssl),
application:start(hackney).
Or add hackney to the applications property of your .app in a release
Simple request
Do a simple request that will return a client state:

Method = get,
URL = <<"https://friendpaste.com">>,
Headers = [],
Payload = <<>>,
Options = [],
{ok, StatusCode, RespHeaders, ClientRef} = hackney:request(Method, URL,
 Headers, Payload,
 Options).
The request method returns the tuple {ok, StatusCode, Headers, ClientRef}
or {error, Reason}. A ClientRef is simply a reference to the current
request that you can reuse.
If you prefer the REST syntax, you can also do:
hackney:Method(URL, Headers, Payload, Options)
where Method, can be any HTTP method in lowercase.
Read the body
{ok, Body} = hackney:body(ClientRef).
hackney:body/1 fetch the body. To fetch it by chunk you can use the
hackney:stream_body/1 function:

read_body(MaxLength, Ref, Acc) when MaxLength > byte_size(Acc) ->
	case hackney:stream_body(Ref) of
		{ok, Data} ->
			read_body(MaxLength, Ref, << Acc/binary, Data/binary >>);
		done ->
			{ok, Acc};
		{error, Reason} ->
			{error, Reason}
	end.
Note: you can also fetch a multipart response using the functions
hackney:stream_multipart/1 and hackney:skip_multipart/1.

Note 2: using the with_body option will return the body directly instead of a reference.

Reuse a connection
By default all connections are created and closed dynamically by
hackney but sometimes you may want to reuse the same reference for your
connections. It's especially useful if you just want to handle serially a
couple of requests.
A closed connection will automatically be reconnected.

To create a connection:

Transport = hackney_ssl,
Host = << "friendpaste.com" >>,
Port = 443,
Options = [],
{ok, ConnRef} = hackney:connect(Transport, Host, Port, Options).
To create a connection that will use an HTTP proxy use
hackney_http_proxy:connect_proxy/5 instead.

To get local and remote ip and port information of a connection:

> hackney:peername(ConnRef).
> hackney:sockname(ConnRef).
Make a request
Once you created a connection use the hackney:send_request/2 function
to make a request:

ReqBody = << "{	\"snippet\": \"some snippet\" }" >>,
ReqHeaders = [{<<"Content-Type">>, <<"application/json">>}],
NextPath = <<"/">>,
NextMethod = post,
NextReq = {NextMethod, NextPath, ReqHeaders, ReqBody},
{ok, _, _, ConnRef} = hackney:send_request(ConnRef, NextReq),
{ok, Body1} = hackney:body(ConnRef).
Here we are posting a JSON payload to '/' on the friendpaste service to
create a paste. Then we close the client connection.
If your connection supports keepalive the connection will be kept open until you close it exclusively.

Send a body
hackney helps you send different payloads by passing different terms as
the request body:
	{form, PropList} : To send a form
	{multipart, Parts} : to send your body using the multipart API. Parts
follow this format:	eof: end the multipart request
	{file, Path}: to stream a file
	{file, Path, ExtraHeaders}: to stream a file
	{file, Path, Name, ExtraHeaders} : to send a file with DOM element name and extra headers
	{Name, Content}: to send a full part
	{Name, Content, ExtraHeaders}: to send a full part
	{mp_mixed, Name, MixedBoundary}: To notify we start a part with
a mixed multipart content
	{mp_mixed_eof, MixedBoundary}: To notify we end a part with a
mixed multipart content

	{file, File} : To send a file
	Bin: To send a binary or an iolist

Note: to send a chunked request, just add the Transfer-Encoding: chunked
header to your headers. Binary and Iolist bodies will be then sent using
the chunked encoding.

Send the body by yourself
While the default is to directly send the request and fetch the status
and headers, if the body is set as the atom stream the request and
send_request function will return {ok, Client}. Then you can use the
function hackney:send_body/2 to stream the request body and
hackney:start_response/1 to initialize the response.
Note: The function hackney:start_response/1 will only accept
a Client that is waiting for a response (with a response state
equal to the atom waiting).

Ex:

ReqBody = << "{
 \"id\": \"some_paste_id2\",
 \"rev\": \"some_revision_id\",
 \"changeset\": \"changeset in unidiff format\"
}" >>,
ReqHeaders = [{<<"Content-Type">>, <<"application/json">>}],
Path = <<"https://friendpaste.com/">>,
Method = post,
{ok, ClientRef} = hackney:request(Method, Path, ReqHeaders, stream, []),
ok = hackney:send_body(ClientRef, ReqBody),
{ok, _Status, _Headers, ClientRef} = hackney:start_response(ClientRef),
{ok, Body} = hackney:body(ClientRef),
Note: to send a multipart body in a streaming fashion use the
hackney:send_multipart_body/2 function.

Get a response asynchronously
Since the 0.6 version, hackney is able to fetch the response
asynchronously using the async option:

Url = <<"https://friendpaste.com/_all_languages">>,
Opts = [async],
LoopFun = fun(Loop, Ref) ->
 receive
 {hackney_response, Ref, {status, StatusInt, Reason}} ->
 io:format("got status: ~p with reason ~p~n", [StatusInt,
 Reason]),
 Loop(Loop, Ref);
 {hackney_response, Ref, {headers, Headers}} ->
 io:format("got headers: ~p~n", [Headers]),
 Loop(Loop, Ref);
 {hackney_response, Ref, done} ->
 ok;
 {hackney_response, Ref, Bin} ->
 io:format("got chunk: ~p~n", [Bin]),
 Loop(Loop, Ref);

 Else ->
 io:format("else ~p~n", [Else]),
 ok
 end
 end.

{ok, ClientRef} = hackney:get(Url, [], <<>>, Opts),
LoopFun(LoopFun, ClientRef).
Note 1: When {async, once} is used the socket will receive only once.
To receive the other messages use the function hackney:stream_next/1.

Note 2: Asynchronous responses automatically checkout the socket at the end.

Note 3: At any time you can go back and receive your response
synchronously using the function hackney:stop_async/1 See the
example test_async_once2 for the usage.

Note 4: When the option {follow_redirect, true} is passed to
the request, you will receive the following messages on valid
redirection:
	{redirect, To, Headers}
	{see_other, To, Headers} for status 303 and POST requests.

Note 5: You can send the messages to another process by using the
option {stream_to, Pid} .

Use the default pool
Hackney uses socket pools to reuse connections globally. By default,
hackney uses a pool named default. You may want to use different
pools in your application which allows you to maintain a group of
connections. To use a different pool, do the following:

Method = get,
URL = <<"https://friendpaste.com">>,
Headers = [],
Payload = <<>>,
Options = [{pool, mypool}],
{ok, StatusCode, RespHeaders, ClientRef} = hackney:request(Method, URL, Headers,
 Payload, Options).
By adding the tuple {pool, mypool} to the options, hackney will use
the connections stored in that pool. The pool gets started automatically
the first time it is used. You can also explicitly configure and start
the pool like this:

PoolName = mypool,
Options = [{timeout, 150000}, {max_connections, 100}],
ok = hackney_pool:start_pool(PoolName, Options),
timeout is the time we keep the connection alive in the pool,
max_connections is the number of connections maintained in the pool. Each
connection in a pool is monitored and closed connections are removed
automatically.
To close a pool do:
hackney_pool:stop_pool(PoolName).
Note: Sometimes you want to disable the default pool in your app
without having to set the client option each time. You can now do this
by setting the hackney application environment key use_default_pool
to false. This means that hackney will not use socket pools unless
specifically requested using the pool option as described above.
To disable socket pools for a single request, specify the option
{pool, false}.

Use a custom pool handler.
Since the version 0.8 it is now possible to use your own Pool to
maintain the connections in hackney.
A pool handler is a module that handles the hackney_pool_handler
behaviour.
See for example the
hackney_disp a load-balanced
Pool dispatcher based on dispcount.
Note: for now you can't force the pool handler / client.

Automatically follow a redirection
If the option {follow_redirect, true} is given to the request, the
client will be able to automatically follow the redirection and
retrieve the body. The maximum number of connections can be set using the
{max_redirect, Max} option. Default is 5.
The client will follow redirects on 301, 302 & 307 if the method is
get or head. If another method is used the tuple
{ok, maybe_redirect, Status, Headers, Client} will be returned. It will
only follow 303 redirects (see other) if the method is a POST.
Last Location is stored in the location property of the client state.
ex:

Method = get,
URL = "http://friendpaste.com/",
ReqHeaders = [{<<"accept-encoding">>, <<"identity">>}],
ReqBody = <<>>,
Options = [{follow_redirect, true}, {max_redirect, 5}],
{ok, S, H, Ref} = hackney:request(Method, URL, ReqHeaders,
 ReqBody, Options),
{ok, Body1} = hackney:body(Ref).
Use SSL/TLS with self signed certificates
Hackney uses CA bundles adapted from Mozilla by
certifi.
Recognising an organisation specific (self signed) certificates is possible
by providing the necessary ssl_options. Note that ssl_options overrides all
options passed to the ssl module.
ex (>= Erlang 21):

CACertFile = <path_to_self_signed_ca_bundle>,
CrlCheckTimeout = 5000,
SSLOptions = [
{verify, verify_peer},
{versions, ['tlsv1.2']},
{cacertfile, CACertFile},
{crl_check, peer},
{crl_cache, {ssl_crl_cache, {internal, [{http, CrlCheckTimeout}]}}},
{customize_hostname_check,
 [{match_fun, public_key:pkix_verify_hostname_match_fun(https)}]}],

Method = get,
URL = "http://my-organisation/",
ReqHeaders = [],
ReqBody = <<>>,
Options = [{ssl_options, SSLoptions}],
{ok, S, H, Ref} = hackney:request(Method, URL, ReqHeaders,
 ReqBody, Options),

%% To provide client certificate:

CertFile = <path_to_client_certificate>,
KeyFile = <path_to_client_private_key>,
SSLOptions1 = SSLoptions ++ [
{certfile, CertFile},
{keyfile, KeyFile}
],
Options1 = [{ssl_options, SSLoptions1}],
{ok, S1, H1, Ref1} = hackney:request(Method, URL, ReqHeaders,
 ReqBody, Options1).

Proxy a connection
HTTP Proxy
To use an HTTP tunnel add the option {proxy, ProxyUrl} where
ProxyUrl can be a simple url or an {Host, Port} tuple. If you need
to authenticate set the option {proxy_auth, {User, Password}}.
SOCKS5 proxy
Hackney supports the connection via a socks5 proxy. To set a socks5
proxy, use the following settings:
	{proxy, {socks5, ProxyHost, ProxyPort}}: to set the host and port of
the proxy to connect.
	{socks5_user, Username}: to set the user used to connect to the proxy
	{socks5_pass, Password}: to set the password used to connect to the proxy

SSL and TCP connections can be forwarded via a socks5 proxy. hackney is
automatically upgrading to an SSL connection if needed.
Metrics
Hackney offers the following metrics
You can enable metrics collection by adding a mod_metrics entry to hackney's
app config. Metrics are disabled by default. The module specified must have an
API matching that of the hackney metrics module.
To use folsom, specify {mod_metrics, folsom}, or if you want to use
exometer, specify{mod_metrics, exometer} and ensure that folsom or exometer is in your code path and has
been started.
Generic Hackney metrics
	Name	Type	Description
	hackney.nb_requests	counter	Number of running requests
	hackney.total_requests	counter	Total number of requests
	hackney.finished_requests	counter	Total number of requests finished

Metrics per Hosts
	Name	Type	Description
	hackney.HOST.nb_requests	counter	Number of running requests
	hackney.HOST.request_time	histogram	Request time
	hackney.HOST.connect_time	histogram	Connect time
	hackney.HOST.response_time	histogram	Response time
	hackney.HOST.connect_timeout	counter	Number of connect timeout
	hackney.HOST.connect_error	counter	Number of timeout errors
	hackney_pool.HOST.new_connection	counter	Number of new pool connections per host
	hackney_pool.HOST.reuse_connection	counter	Number of reused pool connections per host

Metrics per Pool
	Name	Type	Description
	hackney_pool.POOLNAME.take_rate	meter	meter recording rate at which a connection is retrieved from the pool
	hackney_pool.POOLNAME.no_socket	counter	Count of new connections
	hackney_pool.POOLNAME.in_use_count	histogram	How many connections from the pool are used
	hackney_pool.POOLNAME.free_count	histogram	Number of free sockets in the pool
	hackney_pool.POOLNAME.queue_count	histogram	queued clients

Contribute
For issues, comments or feedback please create an
issue.
Notes for developers
If you want to contribute patches or improve the docs, you will need to
build hackney using the rebar_dev.config file. It can also be built
using the Makefile:

$ rebar3 update
$ rebar3 compile

For successfully running the hackney test suite locally it is necessary to
install httpbin.
An example installation using virtualenv::

$ mkvirtualenv hackney
$ pip install gunicorn httpbin

Running the tests:
$ gunicorn --daemon --pid httpbin.pid httpbin:app
$ rebar3 eunit
$ kill `cat httpbin.pid`

 NEWS

1.25.0 - 2025-07-24
 IMPORTANT CHANGE
	change: insecure_basic_auth now defaults to true instead of falseThis restores backward compatibility with pre-1.24.0 behavior where basic auth
was allowed over HTTP connections. If you need strict HTTPS-only basic auth:	Set globally: application:set_env(hackney, insecure_basic_auth, false)
	Or per-request: {insecure_basic_auth, false} in options

1.24.1 - 2025-05-26
	fix: remove unused variable warning in hackney.erl

1.24.0 - 2025-05-26
	security: fix basic auth credential exposure vulnerability
	security: add application variable support for insecure_basic_auth
	fix: NXDOMAIN error in Docker Compose environments (issue #764)
	fix: stream_body timeout after first chunk (issue #762)
	fix: SSL hostname verification with custom ssl_options and SSL message leak in async streaming
	fix: pool connections not freed on 307 redirects and multiple pool/timer race conditions
	fix: socket leaks, process deadlocks, ETS memory leaks, and infinite gen_server calls
	fix: controlling_process error handling in happy eyeballs and connection pool return
	improvement: update GitHub Actions to ubuntu-22.04 and bump certifi/mimerl dependencies

1.23.0 - 2025-02-25
	fix: happy eyeball use correct timeout during connection
	fix: don't wrap connection error
	improvement: only spawn ipv6 worker when needed

1.22.0 - 2025-02-20
	feature: prefer to connect using IPv6. happy eyeball strategy
	improvement: fully support no_proxy environment variable
	doc: migrated to ex_doc

1.21.0 - 2025-02-20
	fix: remove SSL options incompatible with tls 1.3
	fix: url parsing handle "/" path correctly
	fix: simplify integration test suite
	fix: handle chunked response in redirect responses
	fix: handle http & https proxies separately
	fix: skip junk lines in 1.xx response

 security fixes *
	fix URL parsing to prevent SSRF . (related to CVE-2025-1211)
	use latest SSL certificate bundle

1.20.1 - 2023-10-11
	fix multipart: handle case where Length is undefined

1.20.0 - 2023-10-10
	handle * in path encoding
	Support LF separators: since rfc7230-3.5 allows for LF-only
	fix recv stream fix fetching trailers during streaming
	fix CI
	Improve documentation

1.19.1 - 2023-09-21
	feature: add no_proxy_env option to bypass proxy environment settings

1.19.0 - 2023-09-20
	fix: recv: if expected size < BufSize fallback to old behaviour. Fix issue with negative length
	feature: add support for proxy environment setting

1.18.2 - 2023-08-29
	security: update default CA bundles

1.18.1 - 2022-02-03
	security: update default CA bundles
	doc: fix typos

1.18.0 - 2021-09-28
	security: update default CA bundle
	fix pool: make checkout synchronous (remove unwanted messages)

1.17.4 - 2021-03-18
	fix checking when socket is put back in the pool when the requester died.

1.17.3 - 2021-03-17
	fix: ensure we release a socket in the pool when the requester died before being monitored.

1.17.2 - 2021-03-16
	use parse_trans 3.3.1 only (fix compatibility with Erlang < 21)
	bump certifi version
	Allow merging of SSL opts

1.17.1 - 2021-03-15
	fix: Avoid parse_trans warning when using hackney as a dependency
	fix: Link checkout process to fix dangling aborted request

1.17.0 - 2020-12-19
	fix SSL compatibility with erlang OTP 23
	handle empty trailers
	fix race condition in connection pool
	fix memory leak in connection pool
	IDNA update to unicode 13.0.0
	fix build on macosx with OTP >= 20.1
	fix network Location on redirect
	produce uppercase hexadecimal in URLS
	pool queue count metric is now named queue_count
	miscellaneous fixes in documentation

 possible breaking change
	pool queue count metric is now named queue_count. You should update your dashboard to reflect it.

	possible breaking changes when producing uppercase hexadecimal in urls

This change the behaviour of urlencode and pathencode to produce
uppercase hexadecimal to comply to the RFC3986 which may affect
systems using URL as signature or in an hash.
1.16.0 - 2020-05-25
	pool: cache connection IDs
	pool: make sure to reuse a connection if the options match the one given in the request. fix usage with proxy and ssl
connections
	url: handle fragment correctly, a fragment is parsed first to not be mistaken with an URL
	ssl: fix validation with Erlang 19 & Erlang 20
	ssl: handle tlsv1.3 on Erlang OTP 23
	ssl: increase validation depth to match openssl default
	ssl: optimiaz partial chain handling
	ssl: fix hostname checking and correctly handle SNI
	ssl: fix ciphers
	request: fix regression with fully fqdn
	ssl: fix usage with OTP 23
	url: decode username/password for basic auth parameters
	request: do not normalize when converting relative redirect to absolute
	ssl: update to certifi 2.5.2
	request: handle Connection: close response header for stteam
	http: handle leading new lines in HTTP messages
	http: handle trailers in persistent connection
	pool: update pool timeout documentation
	url: fix urlencode

1.15.2 - 2019-09-25
	doc: fix test run example in readme
	fix: hackney stream, send hackney_response before calling handle_error
	fix: error remove ssl honor_cipher_order option
	doc: document self-signed certificate usage
	bump ssl_verify_fun to 1.1.5
	fix: don't use default pool if set to false
	fix: hackney_headers_new:store/3 fix value appending to a list
	fix: miscellaneous specs
	doc: miscellaneous improvements

1.15.1 - 2019-02-26
	fix: don't try to encode to IDN with full ASCII names.

this behaviour is similar to curl and fix errors some people had with docker
creating domain names containing a _

	doc: clarify recv_timeout usage
	fix: don't try to encode hostname IPs to IDN
	fix: path encoding to support () characters
	bump mimerl to 1.2
	bump certifi to 2.5.1

1.15.0 - 2019-01-04
	improve multipart: send form with a field names for files
	fix pool checkout_cancel: reduce the number of pending requests

1.14.3 - 2018-09-29
	idna: don't try to encode a unix socket path

1.14.2 - 2018-09-28
	fix: don't IDNA encode the host with unix scheme
	doc: document basic_auth setting

1.14.0 - 2018-09-12
	bump to certifi 2.4.2
	bump to idna 0.6.0
	fix support of rebar2
	fix specs
	add hackney:sockname/1 and hackney:peername/1 functions
	add new checkout_timeout option for clarity
	improve hackney_url:parse_qs/1 to trim leading and trailing empty values

1.13.0 - 2018-06-22
	fix compatibility with Erlang/OTP 21
	fix parsing query parameters on url without path (#512)
	bump idna to 1.5.2: fix compatibility with rebar2 (#509)
	fix accessing HTTPS sites with an IP address (#494)

1.12.1 - 2018-04-03
	fix terminate_async_response (#498)

1.12.0 - 2018-04-03
	fix socks5 badarg error when an IP is given
	upgrade IDNA to 5.1.1
	upgrade certifi to 2.3.1
	fix handling of requests with content-length or transfer-encoding given (#475)
	improvements: send SNI in socks5 SSL
	fix: Allow trailing spaces at the end of chunk sizes (#489)
	fix: set once the metrics engine
	fix leak in the socket pool (#462)
	fix doc

1.11.0 - 2018-01-23
	add: send SNI for Erlang >= 17
	fix: better handling of stream exits in hackney_manager
	improvement: remove high priority flag from the pool process
	fix: change when hackney loads the hackney metric module (speed improvement)
	fix: return value from the function del_from_queue in connection pool
	fix: handle empty or invalid content-length
	fix: documentation on removed method

1.10.1 - 2017-10-20
	improvement: ignore port empty values on redirect (#444)
	fix: fix reference leak introduced in latest version (#445)
	fix: stream termination, don't raise an error on normal exit

1.10.0 - 2017-10-18
	fix owner tracking (#443)
	fix: fix deadlock in hackney_pool during request timeout (#420)
	fix: set PoolHandler on connect (#427)
	fix: fix unicode in include file (#426)

1.9.0 - 2017-07-30
	security: certifi 2.0.0
	dependency: update idna 5.1.0 (fix windows build and usage with elixir)
	doc: fix typo hackney_multipart doc (#422)

1.8.6 - 2017-06-09
	fix: cleanup socket in async request (#411)

1.8.5 - 2017-05-30
	fix: dialyzer

1.8.4 - 2017-05-28
	fix: tests
	dependency: update idna 5.0.2 (fix compatibility with erlang R20)

1.8.3 - 2017-05-22
	security: certifi 1.2.1
	dependency: update idna 5.0.1

1.8.2 - 2017-05-20
	fix: race condition in controlling process (#407)
	fix: spec of #hackney_url{} (#404)
	fix: make sure to not lost a message during hibernation in async request
	security: certifi 1.2.0
	dependency: update idna 5.0.0

1.8.0 - 2017-04-20
	fix: undefined function (#393)
	fix: close connection if proxy handshake failed (#392)
	fix: handle all headers with the new datastructure introduced in 1.7.0 (#395)
	fix: host header when redirect (#400)
	fix: use connect timeout when retrieving from the pool (#402)
	security: new certifi version

1.7.1 - 2017-03-02
	fix: regression in headers handling (handle different key types)

1.7.0 - 2017-03-01
	fix: new datastructure to handle headers (#390)
	security: new certifi version

1.6.6 - 2017-02-26
	fix: fix header appending
	fix: Url encode host header for unix domain sockets (#382)
	security: new certifi version
	doc: fix few typos

1.6.4 - 2016-12-22
	add: optional urlencode options to qs (#368)
	fix: handle continuation lines in HTTP headers correctly (#366)
	doc: Fix a few documentation typos

1.6.3 - 2016-10-27
	fix: handle trailing whitespace in header values

1.6.2 - 2016-10-22
	add: unix sockets support on Erlang > 19
	fix: hackney_multiprart for Erlang < 17
	add: new socks5_resolver function
	fix: hackney_util:merge_opts/2
	improvements: inet6 support in socks5 sockets
	doc: miscellaneous docs fixes
	security: being more strict in ssl support
	security: bump to certifi 0.7

1.6.1 - 2016-07-10
	fix: close socket on error (#308)
	improvement: handle errors in hackney_response:wait_status (#313)
	improvement: make pathencode faster (#317)
	fix: typo (#321)
	fix: elixir 1.4 warnings (#325)

1.6.0 - 2016-03-25
	add path_encode_fun option to request.
	add: allow force non-POST 303 redirects
	use ssl_verif_fun dependency to replace ssl_verify_hostname
	fix: move included_applications to applications
	fix: mix packaging

1.5.4 - 2016-03-18
	fix support of rebar 3 stable
	add mix package

1.5.0 - 2016-03-02
	refactor: one flat source
	replace hackneymetrics* by metrics library
	fix: hackney_pool (#286)
	security: bump to erlang-certifi 0.4.0

1.4.10 - 2016/02/27
	bump to idna 1.1.0
	fix: don't encode @ in urls
	fix: header stream multipart

1.4.7 - 2015/12/07
	bump to mimerl 1.0.2

1.4.6 - 2015/11/24
	fix build with mix

1.4.5 - 2015/11/23
	fix multipart/form parsing (#258)
	TRAVIS-CI build with rebar3

1.4.4 - 2015/11/04
	fix rebar3 detection

1.4.3 - 2015/11/04
	fix header value parsing (#256)

1.4.2 - 2015/11/03
	fix build with rebar2 and Erlang < 17

1.4.1 - 2015/11/03
	fix build with mix (#255)

1.4.0 - 2015/10/27
	build using hex.pm & small refactoring
	fix multipart (#245)
	fix redirection (#237)
	fix url parsing (#236)
	close connection when max body length is reached (#248)

1.3.2 - 2015/08/27
	fix connect_time metric (#227)
	fix redirection when with_body is enabled (#228)
	close half-closed socket to avoid leak (#231)
	fix unexpected message in hackney_stream (#223)
	fix receive/error in hackney_manager (#232)

1.3.1 - 2015/07/28
	fix: set default recv_timeout to 5s. (#219)
	fix: socks5 fix auth: handle not required case (#218)

1.3.0 - 2015/07/23
	new add max_body setting
	fix: handle partial chains during handshake in HTTPS (#196)

1.2.0 - 2015/06/25
	new: add with_body option to return the body directly (#184)
	fix: rely on ssl version to validate certificates securely using hostname
verification
	fix: fix redirection when transport change (#177)
	new: build is now using rebar3
	new: updated root certificates
	fix: ignore comma in set-cookie attributes (#193)
	fix: status line parsing when reason phrase is missing entirely (#190)
	fix: make sure the response is done during async streaming (#186)
	fix metrics (#186)
	new: bump latest version of ssl_verify_hostname (#175)
	fix: parse server headers
	fix: really honor max redirection (#170)
	fix: handle path parameters in URL (#176)

1.1.1 - 2015/03/20
	fix: fix max redirection (#170)
	fix: don't encode path parameters and unreserved chars. (#176)

1.1.0 - 2015/03/04
	fix: honor max_redirect.
	fix: socket checkout in the pool: close the socket if something happen while
passing the control to the client
	fix: put back the waiter in the queue of the pool if no socket can be
delivered
	fix: make sure we don't release a closed typo
	add: shutdown method to transports
	add: hackney_trace module to trace a request
	add: reuse/new connection metrics
	fix: guard binary in hackney_multipart:len_mp_stream/2
	improvement: pass the socket to hackney:request_info/1
	dependency: update ssl_verify_hostname
	fix: make sure to pass the Host header to the request
	fix: HTTP basic authentication
	fix content-type case
	improvement: tests

1.0.6 - 2015/01/21
	improvement: handle {error, closed} for HTTP 1.1 when no content-length is given.
	improvement: handle 204 and 304 status
	fix keep-alive handling
	remove expm package
	build under R18

1.0.5 - 2014/12/12
	improvement: Do not wait to cancel a request
	improvement: do not control the request preemptively

1.0.4 - 2014/12/8
	fix client leaks on error
	fix monitor counters

1.0.3 - 2014/12/5
	fix SSL validation under R15 and R14 Erlang versions.
	Apply SSL certificate validation to SOCKS5 and HTTP proxies.

1.0.2 - 2014/12/02
	fix redirection: rewrite Host header

1.0.1 - 2014/12/01
	update default certification authority file. Make sure we can validate all SSL
connections even on the AWS platform.
	fix typo

1.0.0 - 2014/11/30
hackney 1.0.0 has been released. This is the first stable and long term
supported release of hackney.
	add metrics
	add SSL certificate verification by default.
	fix: Pool handling

0.15.2 - 2014/11/27
	fix: handle strings in headers
	fix; convert User/Password as string if needed
	fix: handle body given as an empty list

0.15.1 - 2014/11/26
	export find_pool/1 and allows any poolname.

0.15.0 - 2014/11/11
	improve hackney performance and concurrency
	fix pool handling: make sure to reuse the connections

0.14.3 - 2014/10/28
	fix hackney:stop_async/1

0.14.2 - 2014/10/27
	fix memory leak (#77): some requests were not cleaned correctly in
hackney_manager.
	fix ssl race condition (#130)
	fix: check if relative url contains a forward slash
	refactor integration tests and add more tests
	fix socket pool: make sure to close all sockets when the pool is terminated,
and do not store closed sockets if we know it.

0.14.1 - 2014/09/24
	fix redirect location: make sure we use absolute urls
	fix redirection: make sure to follow redirections
	fix hackney_response:read_body/3 spec
	trim response headers when needed
	add redirection basic tests

0.14.0 - 2014/09/18
	fix: validate if the redirection url is absolute.
	fix: return location from headers when possible in
hackney:location/1.
	fix HEAD request. Remove the need to call the body method
	fix: remove undefined function references
	tests: start to handle tests with httpbin

Breaking change:
When doing an HEAD request, the signature of the response when it
succeeded is now {ok, Status, ResponseHeaders} and do not contain a
client reference anymore.
0.13.0 - 2014/07/08
	put hackney_lib back in the source code and refactor the source repository
	fix: handle bad socks5 proxy response
#113
	fix: handle timeout in hackney_socks4:connect/5
#112
	fix: Accept inet6 tcp option for ssl
	fix redirection
	fix: add versions option for ssl

0.12.1 - 2014/04/18
	fix: return the full body on closed connections.
	fix: make sure to always pass the Host header.

0.12.0 - 2014/04/18
	improvement: URI encoding is now fully normalized.
	improvement: TCP_NODELAY is now available by default for all transports
	improvements: IDNA parsing is only done during the normalization which
makes all the connections faster.
	fix: connections options are now correctly passed to the transports.
	fix: HTTP proxying. make sure we reuse the connection
	fix: HTTP proxying, only resolve the proxy domain.
	bump hackney_lib to 0.3.0

Breaking change:
the mimetypes has been
replaced by the
hackney_mimetypes
module. It makes content-type detection a little more efficient. In the
process the functions hackney_util:content_type/1 and
hackney_bstr:content_type/1 have been removed. You should now use the
function hackney_mimetypes:filename/1 .
0.11.2 - 2014/04/15
	new improved and more performant IDNA support
	make sure the socket is closed when we skip the body if needed
	fix multipart EOF parsing
	make sure we finish a multipart stream
	bump hackney_lib to 0.2.5
	enable TCP_NODELAY by default. (To disable, pass the option
{nodelay, false} to connect_options).

0.11.1 - 2014/03/03
	improvement: speed IDNA domains handing
	fix http proxy via CONNECT
	fix: encode the path
	bump to hackney_lib 0.2.4

0.11.0 - 2014/03/02
	add hackney:location/1 to get the final location
	make hackney_request:send/2 more efficient
	fix socket removing in the pool
	fix HTTP proxying
	support IDNA hostnames

0.10.1 - 2013/12/30
	fix multipart file header
	improve the performance when sending a {multipart, Parts} body. Send
it as a stream.
	bump hackney_lib version to 0.2.2

0.10.0 - 2013/12/29
	improve multipart handling: With this change, we can now calculate the
full multipart stream content-length using hackney_multipart:len_mp_stream/2 .
	add hackney:setopts/2 to set options to a request when reusing it.
	add hackney:send_reques/3 to pass new options to a request.
	add the {stream_to, Pid} setting to a request to send the messages
from an asynchronous response to another PID.
	fix Host header: some server do not comply well with the spec and
fail to parse the port when they are listening on 80 or 443. This
change fix it.
	fix: make sure we are re-using connections with asynchronous
responses.

Breaking changes:
	All messages from an async response are now under the
format {hackney_response, Ref, ... } to distinct hackney messages
from others in a process easily.
	You can only make an async response at a time. Ie if you are doing
a persistent request (reusing the same reference) you will need to
pass the async option again to the request. For that purpose the
functions hackney:send_request/3 and hackney:setopts/2 have been
added.
	multipart messages have changed. See the documentation for more
information.

0.9.1 - 2013/12/20
	fix response multipart processing

0.9.0 - 2013/12/19
	add support for multipart responses
	add support for cookies: There is now a cookie
option that can be passed to the request. It can be a single cookie or a
list of cookies. To parse cookies from the response a function hackney:cookies/1 has
been added. It returns all the cookies as a list of [{Key, Value}].
	breaking change: use hackney_lib a web toolkit to handle the HTTP protocol and other manipulations.
	optimization: send body and headers together when it is possible
	fix release handling

0.8.3 - 2013/12/07
	add: support redirection in async responses
	improve
hackney_url:make_url/3
	fix: handle case where the response is already done in async responses

0.8.2 - 2013/12/05
	fix: trap exits in hackney_manager

0.8.1 - 2013/12/04
service release with a new feature and some minor improvements
	added the support for socks5
proxies
	improvement: integer and atom can now be passed in url params or forms
values.
	breaking change: differentiate connect/recv timeout, now connect
timeout return {error, connect_timeout}

0.8.0 - 2013/12/02
major release. With this release the API will not evolve much until the
1.0 release sometimes in january.
	breaking change: hackney now return a reference instead of an opaque record. The
information is maintained in an ETS table. The same reference is now
used for async response requests.
	breaking change: stream_body_request/2 and stream_multipart_request/2 functions has
been renamed to send_body/2 and send_multipart_body/2 .
	breaking change: remove hackney:close_stream/1 function. You only need to
use hackney:close/1 now.
	breaking change: rename hackney:raw/1 function to
hackney:cancel_request/1.
	breaking change: the hackney pool handler based on dispcount is now
available in its own repository so hackney doe not depends on dispcount.
	fix: canceling and closing a request now make sure the async response
process is killed.
	fix: make sure we pass a Transfer-Encoding: chunked header when we
send a body without content-length.
	fix: make sure the client is correctly reconnected when we reuse a
reference.

0.7.0 - 2013/11/22
	add new Loadbalance pool handler based on dispcount
	allows to set the pool handler
	breaking change: remove hackney:start_pool/2 and
hackney:stop_pool/1, use instead hackney_pool:start_pool/2 and
hackney_pool:stop_pool/1
	breaking change: A pool is now used by default
	breaking change: The hackney_form module has been removed. You can
now encode/parse a form using the functions in the hackney_url module.
	deprecate pool_size and replace it by max_connections
	fix: apply applications defaults to the pool

0.6.1 - 2013/11/21
	doc: Fix the asynchronous response example in the readme
	add hackney_url:make_url/3, hackney_url:qs/1, hackney_url:parse_qs/1 functions

0.6.0 - 2013/11/21
	add the possibility to get an asynchronous response
	add support for the "Expect: 100-continue" header
	add hackney:controlling_process/2 to pass the control of an hackney context to another process

0.5.0 - 2013/11/06
	fix: proxied connections
	fix: correct the path passed to a request
	fix: multipart forms
	fix: Make sure that the controller process of the socket is the pool process when the socket is in the pool
	fix: auth header when the user is not given

0.4.4 - 2013/08/25
	fix: doc typos
	fix: dialyzer errors
	fix: add mimetypes to the list of loaded applications
	fix: test.ebin example

0.4.3 - 2013/08/04
	removed parse_transform, the REST API is now available at the compilation.
fix: fix file upload content type
	doc: fix typos

0.4.2 - 2013/06/10
	handle identity transfer encoding. When the connection close return
latest buffer.

0.4.1 - 2013/06/10
	Body can be passed as a
function
	Add recv_timeout option
	Fix HEAD request (don't stream the body)
	Don't pass the Port to the Host header if it's default (http, https)
	Set the connection timeout
	Make sure sendfile correctly handle chunked encoding
	Add support for partial file uploads
	Return received buffer when no content length is given (http 1.0)
	Instead of returning {error, closed}, return {error, {closed, Buffer}} when you receive the body, so you can figure what happened
and maybe use the partial body.

0.4.0 - 2012/10/26
	Allows to stream a multipart request
	Add insecure option to connect via ssl without verifying an SSL
certificate
	Handle empty headers values
	Add force_redirect option
	Add expm support
	Fix body streaming
	Fix SSL handling
	Fix hackney:request/3 (no more loop)

0.3.0 - 2012/09/26
	Add Multipart support
	Add HTTP Proxy tunneling support
	Fix Chunked Response decoding

0.2.0 - 2012/07/18
	Allows the user to use a custom function to stream the body
	Add the possibility to send chunked requests
	Add an option to automatically follow a redirection
	Allows the user to force hackney to use the default pool

0.1.0 - 2012/07/16
	initial release

 License

2012-2025 (c) Benoît Chesneau <benoitc@enki-multimedia.eu>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Notice

hackney

2012-2025 (c) Benoît Chesneau <bchesneau@pm.me>

hackney is released under the Apache 2 license. See the LICENSE file for
the complete license.

Third parties

*) Some part of the code from the cowboy project under ISC license:
Copyright (c) 2011-2012, Loicïc Hoguin <essen@ninenines.eu>

*) hackney_pool is based on lhttpc_manager code from the lhttpc project
under BSD.
Copyright (c) 2009, Erlang Training and Consulting Ltd.

*) mk-ca-bundle.pl from the curl project. under BSD license
Copyright (C) 1998 - 2014, Daniel Stenberg, <daniel@haxx.se>, et al.

*) hackney_trace (C) 2015 under the Erlang Public License

*) hackney_cidr is based on inet_cidr 1.2.1. vendored for customer purpose.
Copyright (c) 2024, Enki Multimedia , MIT License

hackney

 Summary

 Types

 client/0

 client_ref/0

 url/0

 Functions

 body(Ref)

 Return the full body sent with the response.

 body(Ref, MaxLength)

 Return the full body sent with the response as long as the body length doesn't go over MaxLength.

 cancel_request(Ref)

 Extract raw information from the client context This feature can be useful when you want to create a simple proxy, rerouting on the headers and the status line and continue to forward the connection for example.

 checkout(URL)

 checkout(URL, Headers)

 checkout(URL, Headers, Body)

 checkout(URL, Headers, Body, Options)

 close(Ref)

 close the client

 connect(URL)

 connect(Hackney_url, Options)

 connect(Transport, Host, Port)

 connect a socket and create a client state.

 connect(Transport, Host, Port, Options)

 controlling_process(Ref, Pid)

 Assign a new controlling process Pid to Client.

 cookies(Headers)

 copy(URL)

 copy(URL, Headers)

 copy(URL, Headers, Body)

 copy(URL, Headers, Body, Options)

 delete(URL)

 delete(URL, Headers)

 delete(URL, Headers, Body)

 delete(URL, Headers, Body, Options)

 finish_send_body(Ref)

 get(URL)

 get(URL, Headers)

 get(URL, Headers, Body)

 get(URL, Headers, Body, Options)

 head(URL)

 head(URL, Headers)

 head(URL, Headers, Body)

 head(URL, Headers, Body, Options)

 location(Ref)

 return the requested location

 lock(URL)

 lock(URL, Headers)

 lock(URL, Headers, Body)

 lock(URL, Headers, Body, Options)

 merge(URL)

 merge(URL, Headers)

 merge(URL, Headers, Body)

 merge(URL, Headers, Body, Options)

 mkactivity(URL)

 mkactivity(URL, Headers)

 mkactivity(URL, Headers, Body)

 mkactivity(URL, Headers, Body, Options)

 mkcol(URL)

 mkcol(URL, Headers)

 mkcol(URL, Headers, Body)

 mkcol(URL, Headers, Body, Options)

 move(URL)

 move(URL, Headers)

 move(URL, Headers, Body)

 move(URL, Headers, Body, Options)

 msearch(URL)

 msearch(URL, Headers)

 msearch(URL, Headers, Body)

 msearch(URL, Headers, Body, Options)

 notify(URL)

 notify(URL, Headers)

 notify(URL, Headers, Body)

 notify(URL, Headers, Body, Options)

 options(URL)

 options(URL, Headers)

 options(URL, Headers, Body)

 options(URL, Headers, Body, Options)

 patch(URL)

 patch(URL, Headers)

 patch(URL, Headers, Body)

 patch(URL, Headers, Body, Options)

 pause_stream(Ref)

 pause a response stream, the stream process will hibernate and be woken later by the resume function

 peername(Ref)

 peername of the client

 post(URL)

 post(URL, Headers)

 post(URL, Headers, Body)

 post(URL, Headers, Body, Options)

 propfind(URL)

 propfind(URL, Headers)

 propfind(URL, Headers, Body)

 propfind(URL, Headers, Body, Options)

 proppatch(URL)

 proppatch(URL, Headers)

 proppatch(URL, Headers, Body)

 proppatch(URL, Headers, Body, Options)

 purge(URL)

 purge(URL, Headers)

 purge(URL, Headers, Body)

 purge(URL, Headers, Body, Options)

 put(URL)

 put(URL, Headers)

 put(URL, Headers, Body)

 put(URL, Headers, Body, Options)

 redirect_location(Headers)

 report(URL)

 report(URL, Headers)

 report(URL, Headers, Body)

 report(URL, Headers, Body, Options)

 request(URL)

 make a request

 request(Method, URL)

 make a request

 request(Method, URL, Headers)

 make a request

 request(Method, URL, Headers, Body)

 make a request

 request(Method, Hackney_url, Headers0, Body, Options0)

 make a request

 request_info(Ref)

 get request info

 resume_stream(Ref)

 resume a paused response stream, the stream process will be awoken

 search(URL)

 search(URL, Headers)

 search(URL, Headers, Body)

 search(URL, Headers, Body, Options)

 send_body(Ref, Body)

 send the request body until eob. It's issued after sending a request using the request and send_request functions.

 send_multipart_body(Ref, Body)

 send a multipart body until eof Possible value are

 send_request(Ref, Req)

 send a request using the current client state

 send_request(Ref, Req, Options)

 send a request using the current client state and pass new options to it.

 setopts(Ref, Options)

 set client options. Options are

 skip_body(Ref)

 skip the full body. (read all the body if needed).

 skip_multipart(Ref)

 Stream the response body.

 sockname(Ref)

 sockname of the client

 start_response(Ref)

 start a response. Useful if you stream the body by yourself. It will fetch the status and headers of the response. and return

 stop_async(Ref)

 stop to receive asynchronously.

 stream_body(Ref)

 Stream the response body.

 stream_multipart(Ref)

 Stream the response body.

 stream_next(Ref)

 continue to the next stream message. Only use it when {async, once} is set in the client options.

 subscribe(URL)

 subscribe(URL, Headers)

 subscribe(URL, Headers, Body)

 subscribe(URL, Headers, Body, Options)

 trace(URL)

 trace(URL, Headers)

 trace(URL, Headers, Body)

 trace(URL, Headers, Body, Options)

 unlock(URL)

 unlock(URL, Headers)

 unlock(URL, Headers, Body)

 unlock(URL, Headers, Body, Options)

 unsubscribe(URL)

 unsubscribe(URL, Headers)

 unsubscribe(URL, Headers, Body)

 unsubscribe(URL, Headers, Body, Options)

 Types

 client/0

 -type client() ::
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}.

 client_ref/0

 -type client_ref() :: term().

 url/0

 -type url() ::
 #hackney_url{transport :: atom(),
 scheme :: atom(),
 netloc :: binary(),
 raw_path :: binary() | undefined,
 path :: binary() | undefined | nil,
 qs :: binary(),
 fragment :: binary(),
 host :: string(),
 port :: integer() | undefined,
 user :: binary(),
 password :: binary()} |
 binary().

 Functions

 body(Ref)

 -spec body(client_ref()) -> {ok, binary()} | {error, atom()} | {error, {closed, binary()}}.

Return the full body sent with the response.

 body(Ref, MaxLength)

 -spec body(client_ref(), non_neg_integer() | infinity) ->
 {ok, binary()} | {error, atom()} | {error, {closed, binary()}}.

Return the full body sent with the response as long as the body length doesn't go over MaxLength.

 cancel_request(Ref)

 -spec cancel_request(client_ref()) ->
 {ok, {atom(), inet:socket(), binary(), hackney_response:response_state()}} |
 {error, term()}.

Extract raw information from the client context This feature can be useful when you want to create a simple proxy, rerouting on the headers and the status line and continue to forward the connection for example.
return: {ResponseState, Transport, Socket, Buffer} | {error, Reason}
	Response: waiting_response, on_status, on_headers, on_body
	Transport: The current transport module
	Socket: the current socket
	Buffer: Data fetched but not yet processed

 checkout(URL)

 checkout(URL, Headers)

 checkout(URL, Headers, Body)

 checkout(URL, Headers, Body, Options)

 close(Ref)

close the client

 connect(URL)

 connect(Hackney_url, Options)

 connect(Transport, Host, Port)

connect a socket and create a client state.

 connect(Transport, Host, Port, Options)

 controlling_process(Ref, Pid)

 -spec controlling_process(client_ref(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Client.

 cookies(Headers)

 -spec cookies(list()) -> list().

 copy(URL)

 copy(URL, Headers)

 copy(URL, Headers, Body)

 copy(URL, Headers, Body, Options)

 delete(URL)

 delete(URL, Headers)

 delete(URL, Headers, Body)

 delete(URL, Headers, Body, Options)

 finish_send_body(Ref)

 get(URL)

 get(URL, Headers)

 get(URL, Headers, Body)

 get(URL, Headers, Body, Options)

 head(URL)

 head(URL, Headers)

 head(URL, Headers, Body)

 head(URL, Headers, Body, Options)

 location(Ref)

 -spec location(client_ref()) -> binary().

return the requested location

 lock(URL)

 lock(URL, Headers)

 lock(URL, Headers, Body)

 lock(URL, Headers, Body, Options)

 merge(URL)

 merge(URL, Headers)

 merge(URL, Headers, Body)

 merge(URL, Headers, Body, Options)

 mkactivity(URL)

 mkactivity(URL, Headers)

 mkactivity(URL, Headers, Body)

 mkactivity(URL, Headers, Body, Options)

 mkcol(URL)

 mkcol(URL, Headers)

 mkcol(URL, Headers, Body)

 mkcol(URL, Headers, Body, Options)

 move(URL)

 move(URL, Headers)

 move(URL, Headers, Body)

 move(URL, Headers, Body, Options)

 msearch(URL)

 msearch(URL, Headers)

 msearch(URL, Headers, Body)

 msearch(URL, Headers, Body, Options)

 notify(URL)

 notify(URL, Headers)

 notify(URL, Headers, Body)

 notify(URL, Headers, Body, Options)

 options(URL)

 options(URL, Headers)

 options(URL, Headers, Body)

 options(URL, Headers, Body, Options)

 patch(URL)

 patch(URL, Headers)

 patch(URL, Headers, Body)

 patch(URL, Headers, Body, Options)

 pause_stream(Ref)

 -spec pause_stream(client_ref()) -> ok | {error, req_not_found}.

pause a response stream, the stream process will hibernate and be woken later by the resume function

 peername(Ref)

peername of the client

 post(URL)

 post(URL, Headers)

 post(URL, Headers, Body)

 post(URL, Headers, Body, Options)

 propfind(URL)

 propfind(URL, Headers)

 propfind(URL, Headers, Body)

 propfind(URL, Headers, Body, Options)

 proppatch(URL)

 proppatch(URL, Headers)

 proppatch(URL, Headers, Body)

 proppatch(URL, Headers, Body, Options)

 purge(URL)

 purge(URL, Headers)

 purge(URL, Headers, Body)

 purge(URL, Headers, Body, Options)

 put(URL)

 put(URL, Headers)

 put(URL, Headers, Body)

 put(URL, Headers, Body, Options)

 redirect_location(Headers)

 report(URL)

 report(URL, Headers)

 report(URL, Headers, Body)

 report(URL, Headers, Body, Options)

 request(URL)

 -spec request(url() | binary() | list()) ->
 {ok, integer(), list(), client_ref()} | {ok, integer(), list()} | {error, term()}.

make a request

 request(Method, URL)

 -spec request(term(), url() | binary() | list()) ->
 {ok, integer(), list(), client_ref()} | {ok, integer(), list()} | {error, term()}.

make a request

 request(Method, URL, Headers)

 -spec request(term(), url() | binary() | list(), list()) ->
 {ok, integer(), list(), client_ref()} | {ok, integer(), list()} | {error, term()}.

make a request

 request(Method, URL, Headers, Body)

 -spec request(term(), url() | binary() | list(), list(), term()) ->
 {ok, integer(), list(), client_ref()} | {ok, integer(), list()} | {error, term()}.

make a request

 request(Method, Hackney_url, Headers0, Body, Options0)

 -spec request(term(), url() | binary() | list(), list(), term(), list()) ->
 {ok, integer(), list(), client_ref()} |
 {ok, integer(), list(), binary()} |
 {ok, integer(), list()} |
 {ok, client_ref()} |
 {error, term()}.

make a request
Args:
	Method>: method used for the request (get, post, ...)
	Url: full url of the request
	Headers Proplists
	Body:	{form, [{K, V}, ...]}: send a form url encoded
	{multipart, [{K, V}, ...]}: send a form using multipart
	{file, "/path/to/file"}: to send a file
	Bin: binary or iolist

	Options:[{connect_options, connect_options(), {ssl_options, ssl_options()}, Others]
	connect_options(): The default connect_options are [binary, {active, false}, {packet, raw}]). For valid options see the gen_tcp options.
	ssl_options(): See the ssl options from the ssl module.
	with_body: when this option is passed the body is returned directly. The response is {ok, Status, Headers, Body}
	max_body: sets maximum allowed size of the body if with_body is true
	async: receive the response asynchronously The function return {ok, StreamRef}. When {async, once} is used the response will be received only once. To receive the other messages use the function hackney:stream_next/1
	{path_encode_fun, fun()}: function used to encode the path. if not set it will use hackney_url:pathencode/1 the function takes the binary path as entry and return a new encoded path.
	{stream_to, pid()}: If async is true or once, the response messages will be sent to this PID.
	{cookie, list() | binary()} : to set a cookie or a list of cookies.
	Others options are:	{follow_redirect, boolean}: false by default, follow a redirection
	{max_redirect, integer}: 5 by default, the maximum of redirection for a request
	{force_redirect, boolean}: false by default, to force the redirection even on POST
	{basic_auth, {binary, binary}}`: HTTP basic auth username and password. Only allowed over HTTPS unless {insecure_basic_auth, true} is also set. `{insecure_basic_auth, boolean}: true by default. When true, allows basic auth over unencrypted HTTP connections (security risk). Can also be set globally via application:set_env(hackney, insecure_basic_auth, false).
	{proxy, proxy_options()}: to connect via a proxy.
	insecure: to perform "insecure" SSL connections and transfers without checking the certificate
	{checkout_timeout, infinity | integer()}: timeout used when checking out a socket from the pool, in milliseconds. By default is equal to connect_timeout
	{connect_timeout, infinity | integer()}: timeout used when establishing a connection, in milliseconds. Default is 8000
	{recv_timeout, infinity | integer()}: timeout used when receiving data over a connection. Default is 5000

Note: if the response is async, only follow_redirect is take in consideration for the redirection. If a valid redirection happen you receive the messages:	{redirect, To, Headers}
	{see_other, To, Headers} for status 303 POST requests.

	proxy_options(): options to connect by a proxy:	binary(): url to use for the proxy. Used for basic HTTP proxy
	{Host::binary(), Port::binary}: Host and port to connect, for HTTP proxy
	{socks5, Host::binary(), Port::binary()}: Host and Port to connect to a socks5 proxy.
	{connect, Host::binary(), Port::binary()}: Host and Port to connect to an HTTP tunnel.

Note: instead of doing hackney:request(Method, ...) you can also do hackney:Method(...) if you prefer to use the REST syntax.
Return:
	{ok, ResponseStatus, ResponseHeaders}: On HEAD request if the response succeeded.
	{ok, ResponseStatus, ResponseHeaders, Ref}: When the response succeeded. The request reference is used later to retrieve the body.
	{ok, ResponseStatus, ResponseHeaders, Body}: When the option with_body is set to true and the response succeeded.
	{ok, Ref} Return the request reference when you decide to stream the request. You can use the returned reference to stream the request body and continue to handle the response.
	{error, {closed, PartialBody}} A body was expected but instead the remote closed the response after sending the headers. Equivalent to the curl message no chunk, no close, no size. Assume close to signal end.
	{error, term()} other errors.

 request_info(Ref)

 -spec request_info(client_ref()) -> list().

get request info

 resume_stream(Ref)

 -spec resume_stream(client_ref()) -> ok | {error, req_not_found}.

resume a paused response stream, the stream process will be awoken

 search(URL)

 search(URL, Headers)

 search(URL, Headers, Body)

 search(URL, Headers, Body, Options)

 send_body(Ref, Body)

 -spec send_body(client_ref(), term()) -> ok | {error, term()}.

send the request body until eob. It's issued after sending a request using the request and send_request functions.

 send_multipart_body(Ref, Body)

 -spec send_multipart_body(client_ref(), term()) -> ok | {error, term()}.

send a multipart body until eof Possible value are :
	eof: end the multipart request
	{file, Path}: to stream a file
	{file, Path, ExtraHeaders}: to stream a file
	{data, Name, Content}: to send a full part
	{data, Name, Content, ExtraHeaders}: to send a full part
	{part, Name, Len}: to start sending a part with a known length in a streaming fashion
	{part, Name, Len, ExtraHeader}: to start sending a part in a streaming fashion
	{part, Name}: to start sending a part without length in a streaming fashion
	{part, Name, ExtraHeader}: to start sending a part without length in a streaming fashion
	{part_bin, Bin}: To send part of part
	{part, eof}: To notify the end of the part
	{mp_mixed, Name, MixedBoundary}: To notify we start a part with a a mixed multipart content
	{mp_mixed_eof, MixedBoundary}: To notify we end a part with a a mixed multipart content

Note: You can calculate the full length of a multipart stream using the function hackney_multipart:len_mp_stream/2 .

 send_request(Ref, Req)

send a request using the current client state

 send_request(Ref, Req, Options)

send a request using the current client state and pass new options to it.

 setopts(Ref, Options)

 -spec setopts(client_ref(), list()) -> ok.

set client options. Options are:
	async: to fetch the response asynchronously
	{async, once}: to receive the response asynchronously one time. To receive the next message use the function hackney:stream_next/1.
	{stream_to, pid()}: to set the pid where the messages of an asynchronous response will be sent.
	{follow_redirect, bool()} : if true a redirection will be followed when the response is received synchronously
	{force_redirect, bool()} : if true a 301/302 redirection will be followed even on POST.
	{max_redirect, integer()} the maximum number of redirections that will be followed

 skip_body(Ref)

 -spec skip_body(client_ref()) -> ok | {error, atom()}.

skip the full body. (read all the body if needed).

 skip_multipart(Ref)

 -spec skip_multipart(client_ref()) -> ok | {error, term()}.

Stream the response body.

 sockname(Ref)

sockname of the client

 start_response(Ref)

 -spec start_response(client_ref()) ->
 {ok, integer(), list(), client_ref()} | {ok, client_ref()} | {error, term()}.

start a response. Useful if you stream the body by yourself. It will fetch the status and headers of the response. and return

 stop_async(Ref)

 -spec stop_async(client_ref()) -> {ok, client_ref()} | {error, req_not_found} | {error, term()}.

stop to receive asynchronously.

 stream_body(Ref)

 -spec stream_body(client_ref()) -> {ok, binary()} | done | {error, term()}.

Stream the response body.

 stream_multipart(Ref)

 -spec stream_multipart(client_ref()) ->
 {headers, list()} | {body, binary()} | eof | end_of_part | {error, term()}.

Stream the response body.
Return:
	{headers, Headers}: the part headers
	{body, Bin}: part of the content
	end_of_part : end of part
	mp_mixed: notify the beginning of a mixed multipart part
	mp_mixed_eof: notify the end of a mixed multipart part
	eof: notify the end of the multipart request

 stream_next(Ref)

 -spec stream_next(client_ref()) -> ok | {error, req_not_found}.

continue to the next stream message. Only use it when {async, once} is set in the client options.

 subscribe(URL)

 subscribe(URL, Headers)

 subscribe(URL, Headers, Body)

 subscribe(URL, Headers, Body, Options)

 trace(URL)

 trace(URL, Headers)

 trace(URL, Headers, Body)

 trace(URL, Headers, Body, Options)

 unlock(URL)

 unlock(URL, Headers)

 unlock(URL, Headers, Body)

 unlock(URL, Headers, Body, Options)

 unsubscribe(URL)

 unsubscribe(URL, Headers)

 unsubscribe(URL, Headers, Body)

 unsubscribe(URL, Headers, Body, Options)

hackney_app

 Summary

 Functions

 get_app_env(Key)

 return a config value

 get_app_env(Key, Default)

 return a config value

 start(StartType, StartArgs)

 stop(State)

 Functions

 get_app_env(Key)

return a config value

 get_app_env(Key, Default)

return a config value

 start(StartType, StartArgs)

 stop(State)

hackney_bstr

 Summary

 Types

 cp/0

 part/0

 END: Remove when OTP 17 not officially supported

 Functions

 alpha(Data, Fun)

 Parse a list of case-insensitive alpha characters.

 char_to_lower(Ch)

 Convert [A-Z] characters to lowercase.

 char_to_upper(Ch)

 Convert [a-z] characters to uppercase.

 digits(Data)

 Parse a list of digits as a non negative integer.

 digits(Data, Fun)

 digits(Data, Fun, Acc)

 join(L, Separator)

 list(Data, Fun)

 Parse a list of the given type.

 nonempty_list(Data, Fun)

 Parse a non-empty list of the given type.

 parameterized_tokens(Data)

 Parse a non empty list of tokens followed with optional parameters.

 params(Data, Fun)

 Parse a list of parameters (a=b;c=d).

 quoted_string(_, Fun)

 split(Subject, Pattern, Options)

 to_binary(V)

 to_hex(Bin)

 to_lower(L)

 Convert a binary string to lowercase.

 to_upper(U)

 token(Data, Fun)

 Parse a token.

 token_ci(Data, Fun)

 Parse a case-insensitive token.

 trim(Data)

 whitespace(Data, Fun)

 Skip whitespace.

 word(Data, Fun)

 Parse either a token or a quoted string.

 Types

 cp/0

 -opaque cp()

 part/0

 -type part() :: {Start :: non_neg_integer(), Length :: integer()}.

END: Remove when OTP 17 not officially supported

 Functions

 alpha(Data, Fun)

 -spec alpha(binary(), fun()) -> any().

Parse a list of case-insensitive alpha characters.
Changes all characters to lowercase.

 char_to_lower(Ch)

 -spec char_to_lower(char()) -> char().

Convert [A-Z] characters to lowercase.

 char_to_upper(Ch)

 -spec char_to_upper(char()) -> char().

Convert [a-z] characters to uppercase.

 digits(Data)

 -spec digits(binary()) -> non_neg_integer() | {error, badarg}.

Parse a list of digits as a non negative integer.

 digits(Data, Fun)

 -spec digits(binary(), fun()) -> any().

 digits(Data, Fun, Acc)

 -spec digits(binary(), fun(), non_neg_integer()) -> any().

 join(L, Separator)

 list(Data, Fun)

 -spec list(binary(), fun()) -> list() | {error, badarg}.

Parse a list of the given type.

 nonempty_list(Data, Fun)

 -spec nonempty_list(binary(), fun()) -> [any(), ...] | {error, badarg}.

Parse a non-empty list of the given type.

 parameterized_tokens(Data)

 -spec parameterized_tokens(binary()) -> any().

Parse a non empty list of tokens followed with optional parameters.

 params(Data, Fun)

 -spec params(binary(), fun()) -> any().

Parse a list of parameters (a=b;c=d).

 quoted_string(_, Fun)

 -spec quoted_string(binary(), fun()) -> any().

 split(Subject, Pattern, Options)

 -spec split(Subject, Pattern, Options) -> Parts
 when
 Subject :: binary(),
 Pattern :: binary() | [binary()] | cp(),
 Options :: [Option],
 Option :: {scope, part()} | trim | global | trim_all,
 Parts :: [binary()].

 to_binary(V)

 to_hex(Bin)

 to_lower(L)

 -spec to_lower(binary() | atom() | list()) -> binary().

Convert a binary string to lowercase.

 to_upper(U)

 -spec to_upper(binary() | atom() | list()) -> binary().

 token(Data, Fun)

 -spec token(binary(), fun()) -> any().

Parse a token.

 token_ci(Data, Fun)

 -spec token_ci(binary(), fun()) -> any().

Parse a case-insensitive token.
Changes all characters to lowercase.

 trim(Data)

 -spec trim(binary()) -> binary().

 whitespace(Data, Fun)

 -spec whitespace(binary(), fun()) -> any().

Skip whitespace.

 word(Data, Fun)

 -spec word(binary(), fun()) -> any().

Parse either a token or a quoted string.

hackney_cidr

 Summary

 Types

 cidr/0

 Functions

 address_count(IP, MaskLen)

 return the number of IP addresses included in the CIDR block

 contains(_, Addr)

 return true if the CIDR block contains the IP address or CIDR block, false otherwise.

 ip_gte(_, _)

 ip_lte(_, _)

 is_ipv4(_)

 return true if the value is an ipv4 address

 is_ipv6(_)

 return true if the value is an ipv6 address

 merge_cidrs(CIDRs)

 Unique sort and merge a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges. For merging, CIDR blocks that are contained by other CIDR blocks are removed and adjacent CIDR blocks are merged into larger ones.

 parse(S)

 parses S as a CIDR notation IP address and mask

 parse(B, Adjust)

 parses S as a CIDR notation IP address and mask. If Adjust = true, allow the IP to contain values beyond the mask and silently ignore them. Otherwise, enforce that the IP address is fully inside the specified mask (the default behavior of parse/1).

 to_binary(_)

 return a CIDR block as a binary string.

 to_string(_)

 return a CIDR block as a string.

 usort_cidrs(CIDRs)

 Unique sort a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges

 Types

 cidr/0

 -type cidr() ::
 {Start :: inet:ip4_address(), End :: inet:ip4_address(), MaskLen :: 0..32} |
 {Start :: inet:ip6_address(), End :: inet:ip6_address(), MaskLen :: 0..128}.

 Functions

 address_count(IP, MaskLen)

 -spec address_count(inet:ip4_address(), MaskLen :: 0..32) -> pos_integer();
 (inet:ip6_address(), MaskLen :: 0..128) -> pos_integer().

return the number of IP addresses included in the CIDR block

 contains(_, Addr)

 -spec contains(cidr(), inet:ip_address() | cidr()) -> boolean().

return true if the CIDR block contains the IP address or CIDR block, false otherwise.

 ip_gte(_, _)

 ip_lte(_, _)

 is_ipv4(_)

 -spec is_ipv4(inet:ip_address()) -> boolean().

return true if the value is an ipv4 address

 is_ipv6(_)

 -spec is_ipv6(inet:ip_address()) -> boolean().

return true if the value is an ipv6 address

 merge_cidrs(CIDRs)

 -spec merge_cidrs([cidr()]) -> [cidr()].

Unique sort and merge a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges. For merging, CIDR blocks that are contained by other CIDR blocks are removed and adjacent CIDR blocks are merged into larger ones.

 parse(S)

 -spec parse(string() | binary()) -> cidr().

parses S as a CIDR notation IP address and mask

 parse(B, Adjust)

 -spec parse(string() | binary(), Adjust :: boolean()) -> cidr().

parses S as a CIDR notation IP address and mask. If Adjust = true, allow the IP to contain values beyond the mask and silently ignore them. Otherwise, enforce that the IP address is fully inside the specified mask (the default behavior of parse/1).

 to_binary(_)

 -spec to_binary(cidr()) -> binary().

return a CIDR block as a binary string.

 to_string(_)

 -spec to_string(cidr()) -> string().

return a CIDR block as a string.

 usort_cidrs(CIDRs)

 -spec usort_cidrs([cidr()]) -> [cidr()].

Unique sort a list of CIDR blocks, ordering IPv4 ranges before IPv6 ranges

hackney_connect

 Summary

 Functions

 check_or_close(Client)

 close(Client)

 close the client

 connect(Transport, Host, Port)

 connect(Transport, Host, Port, Options)

 connect(Transport, Host, Port, Options, Dynamic)

 create_connection(Transport, Host, Port, Options)

 create a connection and return a client state

 create_connection(Transport, Host, Port, Options, Dynamic)

 is_pool(Client)

 get current pool pid or name used by a client if needed

 maybe_connect(Client)

 connect a socket and create a client state.

 peername(Client)

 get the address and port for the other end of current connection in the client

 reconnect(Host, Port, Transport, State)

 set_sockopts(Client, Options)

 add set sockets options in the client

 sockname(Client)

 the local address and port of current socket in the client

 Functions

 check_or_close(Client)

 close(Client)

close the client

 connect(Transport, Host, Port)

 connect(Transport, Host, Port, Options)

 connect(Transport, Host, Port, Options, Dynamic)

 create_connection(Transport, Host, Port, Options)

create a connection and return a client state

 create_connection(Transport, Host, Port, Options, Dynamic)

 is_pool(Client)

get current pool pid or name used by a client if needed

 maybe_connect(Client)

connect a socket and create a client state.

 peername(Client)

get the address and port for the other end of current connection in the client

 reconnect(Host, Port, Transport, State)

 set_sockopts(Client, Options)

add set sockets options in the client

 sockname(Client)

the local address and port of current socket in the client

hackney_connection

 Summary

 Functions

 close(Connection, Socket)

 connect(Connection, ConnectOptions, Timeout)

 connect_options(Transport, Host, ClientOptions)

 controlling_process(Connection, Socket, Owner)

 get_property(_, Connection)

 is_ssl(Connection)

 merge_ssl_opts(Host, OverrideOpts)

 new(Client)

 setopts(Connection, Socket, Opts)

 ssl_opts(Host, Options)

 sync_socket(Connection, Socket)

 Functions

 close(Connection, Socket)

 connect(Connection, ConnectOptions, Timeout)

 connect_options(Transport, Host, ClientOptions)

 controlling_process(Connection, Socket, Owner)

 get_property(_, Connection)

 is_ssl(Connection)

 merge_ssl_opts(Host, OverrideOpts)

 new(Client)

 setopts(Connection, Socket, Opts)

 ssl_opts(Host, Options)

 sync_socket(Connection, Socket)

hackney_connections

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 delete(Key)

 get_num_entries()

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 insert(Key, Id)

 lookup(Key)

 start_link()

 terminate(Reason, State)

 Functions

 code_change(OldVsn, State, Extra)

 delete(Key)

 get_num_entries()

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 insert(Key, Id)

 lookup(Key)

 start_link()

 terminate(Reason, State)

hackney_cookie

 Summary

 Types

 cookie_option/0

 cookie_opts/0

 Functions

 parse_cookie(Cookie)

 Parse a cookie header string and return a list of key/values.

 setcookie(Name, Value, Opts)

 Convert a cookie name, value and options to its iodata form.

 Types

 cookie_option/0

 -type cookie_option() ::
 {max_age, non_neg_integer()} |
 {domain, binary()} |
 {path, binary()} |
 {secure, boolean()} |
 {http_only, boolean()}.

 cookie_opts/0

 -type cookie_opts() :: [cookie_option()].

 Functions

 parse_cookie(Cookie)

 -spec parse_cookie(binary()) -> [{binary(), binary()}] | {error, badarg}.

Parse a cookie header string and return a list of key/values.

 setcookie(Name, Value, Opts)

 -spec setcookie(iodata(), iodata(), cookie_opts()) -> binary().

Convert a cookie name, value and options to its iodata form.

hackney_date

 Summary

 Functions

 asctime_to_date(Data)

 Parse an asctime date.

 date_to_rfc2109(_)

 Return the date formatted according to RFC2109.

 parse_http_date(Data)

 Parse an HTTP date (RFC1123, RFC850 or asctime date).

 rfc850_to_date(Data)

 Parse an RFC850 date.

 rfc1123_to_date(Data)

 Parse an RFC1123 date.

 rfc2109_to_date(Data)

 Parse an RFC2109 date.

 Functions

 asctime_to_date(Data)

 -spec asctime_to_date(binary()) -> any().

Parse an asctime date.

 date_to_rfc2109(_)

 -spec date_to_rfc2109(calendar:datetime()) -> binary().

Return the date formatted according to RFC2109.

 parse_http_date(Data)

 -spec parse_http_date(binary()) -> any().

Parse an HTTP date (RFC1123, RFC850 or asctime date).

 rfc850_to_date(Data)

 -spec rfc850_to_date(binary()) -> any().

Parse an RFC850 date.

 rfc1123_to_date(Data)

 -spec rfc1123_to_date(binary()) -> any().

Parse an RFC1123 date.

 rfc2109_to_date(Data)

 -spec rfc2109_to_date(binary()) -> any().

Parse an RFC2109 date.

hackney_happy

 Summary

 Functions

 connect(Hostname, Port, Opts)

 connect(Hostname, Port, Opts, Timeout)

 Functions

 connect(Hostname, Port, Opts)

 connect(Hostname, Port, Opts, Timeout)

hackney_headers

module to manipulate HTTP headers

 Summary

 Types

 disposition/0

 headers/0

 Functions

 content_disposition(Data)

 Parse a content disposition.

 content_type(Data)

 Parse a content type.

 delete(Key, Headers)

 Delete the header corresponding to key if it is present.

 fold(Fun, Acc0, Headers)

 fold the list of headers

 get_value(Key, Headers)

 get the value of the header

 get_value(Key, Headers, Default)

 header_value(Value, Params)

 join value and params in a binary

 insert(Key, Value, Headers)

 Insert the pair into the headers, merging with any pre-existing key. A merge is done with Value = V0 ++ ", " ++ V1.

 insert(Key, Value, Params, Headers)

 same as insert/3 but allows to add params to the header value.

 make_header(Name, Value)

 Create a binary header

 make_header(Name, Value, Params)

 new()

 initialise an header dict

 new(D)

 parse(Name, Headers)

 Semantically parse headers.

 store(Key, Value, Headers)

 store the pair into the headers, replacing any pre-existing key.

 to_binary(Headers)

 return all the headers as a binary that can be sent over the wire.

 to_list(Headers)

 update(Headers, KVs)

 extend the headers with a new list of {Key, Value} pair.

 Types

 disposition/0

 -type disposition() :: {binary(), [{binary(), binary()}]}.

 headers/0

 -type headers() :: any().

 Functions

 content_disposition(Data)

 -spec content_disposition(binary()) -> disposition().

Parse a content disposition.

 content_type(Data)

 -spec content_type(binary()) -> any().

Parse a content type.
We lowercase the charset header as we know it's case insensitive.

 delete(Key, Headers)

Delete the header corresponding to key if it is present.

 fold(Fun, Acc0, Headers)

fold the list of headers

 get_value(Key, Headers)

get the value of the header

 get_value(Key, Headers, Default)

 header_value(Value, Params)

join value and params in a binary

 insert(Key, Value, Headers)

Insert the pair into the headers, merging with any pre-existing key. A merge is done with Value = V0 ++ ", " ++ V1.

 insert(Key, Value, Params, Headers)

same as insert/3 but allows to add params to the header value.

 make_header(Name, Value)

Create a binary header

 make_header(Name, Value, Params)

 new()

 -spec new() -> headers().

initialise an header dict

 new(D)

 -spec new(list()) -> headers().

 parse(Name, Headers)

 -spec parse(binary(), list() | headers()) -> any() | undefined | {error, badarg}.

Semantically parse headers.
When the value isn't found, a proper default value for the type returned is used as a return value.
See also: parse/3.

 store(Key, Value, Headers)

store the pair into the headers, replacing any pre-existing key.

 to_binary(Headers)

return all the headers as a binary that can be sent over the wire.

 to_list(Headers)

 update(Headers, KVs)

extend the headers with a new list of {Key, Value} pair.

hackney_headers_new

 Summary

 Types

 headers/0

 headers_list/0

 key/0

 value/0

 Functions

 append(Key, Value, _)

 append a new value to the list of value for the the header field if the key has not been recorded the list will be created with the value as the first item.

 delete(Key, H)

 delete a field from headers.

 fold(Fun, Acc, _)

 from_list(HeadersList)

 create headers from a list

 get_value(Key, Headers)

 get the first value of an headers or return undefined

 get_value(Key, Headers, Default)

 get the first value of an headers or return the default

 is_key(Key, _)

 is the header field exists or no

 lookup(Key, _)

 merge(Headers1, _)

 merge 2 headers objects. If a key is already existing in HEader1, it will be kept.

 new()

 initialize an empty headers objecy

 new(H)

 parse_content_type(Data)

 parse_media_type(Data, Fun)

 Parse a media type.

 size(_)

 return the number of headers fields

 store(KVs, Headers)

 store a list of headers. Replacing oldest

 store(Key, Values, _)

 replace the content of the header field with the value or the list of values.

 store_new(Key, Value, Headers)

 only store a value if the key exist.

 to_binary(Headers)

 transform headers to a binary that can be used to construct a request

 to_iolist(Headers)

 convert headers to an iolist. Useful to send them over the wire.

 to_list(Headers)

 convert headers to a list

 Types

 headers/0

 -type headers() :: term().

 headers_list/0

 -type headers_list() :: [{key(), value()}].

 key/0

 -type key() :: binary() | string().

 value/0

 -type value() :: binary() | {binary() | [{binary(), binary()} | binary()]}.

 Functions

 append(Key, Value, _)

 -spec append(key(), value(), headers()) -> headers().

append a new value to the list of value for the the header field if the key has not been recorded the list will be created with the value as the first item.

 delete(Key, H)

 -spec delete(key(), headers()) -> headers().

delete a field from headers.

 fold(Fun, Acc, _)

 from_list(HeadersList)

 -spec from_list(headers_list()) -> headers().

create headers from a list

 get_value(Key, Headers)

 -spec get_value(key(), headers()) -> value() | undefined.

get the first value of an headers or return undefined

 get_value(Key, Headers, Default)

 -spec get_value(key(), headers(), any()) -> value() | any().

get the first value of an headers or return the default

 is_key(Key, _)

 -spec is_key(key(), headers()) -> true | false.

is the header field exists or no

 lookup(Key, _)

 merge(Headers1, _)

 -spec merge(headers(), headers()) -> headers().

merge 2 headers objects. If a key is already existing in HEader1, it will be kept.

 new()

 -spec new() -> headers().

initialize an empty headers objecy

 new(H)

 -spec new(headers_list() | headers()) -> headers().

 parse_content_type(Data)

 -spec parse_content_type(binary()) -> any().

 parse_media_type(Data, Fun)

 -spec parse_media_type(binary(), fun()) -> any().

Parse a media type.

 size(_)

 -spec size(headers()) -> non_neg_integer().

return the number of headers fields

 store(KVs, Headers)

 -spec store(headers_list(), headers()) -> headers().

store a list of headers. Replacing oldest

 store(Key, Values, _)

 -spec store(key(), value() | [value()], headers()) -> headers().

replace the content of the header field with the value or the list of values.

 store_new(Key, Value, Headers)

 -spec store_new(key(), value(), headers()) -> {boolean(), headers()}.

only store a value if the key exist.

 to_binary(Headers)

 -spec to_binary(headers()) -> binary().

transform headers to a binary that can be used to construct a request

 to_iolist(Headers)

 -spec to_iolist(headers()) -> iolist().

convert headers to an iolist. Useful to send them over the wire.

 to_list(Headers)

 -spec to_list(headers()) -> headers_list().

convert headers to a list

hackney_http

HTTP parser in pure Erlang This parser is able to parse HTTP responses and requests in a streaming fashion. If not set it will be autodetect the type of binary parsed, if it's a request or a response.
Internally it is keeping a buffer for intermediary steps but don't keep any state in memory.
The first time you initialise a parser using hackney_http:parser/0 or hackney_http:parser/1 you will receive an opaque record You can then process it using the function hackney_http:execute/2.
Each steps will return the status, some data and the new parser that you can process later with hackney_http:execute/2 when {more, ...} is returnned or hackney_http:execute/1 in other cases:
	{response, http_version(), status(), http_reason(), parser()}: when the first line of a response is parsed
	{request, http_version(), http_method(), uri(), parser()}: when the first line of a request (on servers) is parsed
	{more, parser()}: when the parser need more data. The new data should be passed to hackney_http:execute/2 with the new parser() state received.
	{header, {Name :: binary(), Value :: binary()}, parser()}: when an header has been parsed. To continue the parsing you must call the given parser() with hackney_http:execute/1.
	{headers_complete, parser()} : when all headers have been parsed. To continue the parsing you must call the given parser() state with hackney_http:execute/1.
	{more, parser(), binary()}: on body, when the parser need more data. The new data should be passed to hackney_http:execute/2 (with parser()) when received. The binary at the end of the tuple correspond to the actual buffer of the parser. It may be used for other purpose, like start to parse a new request on pipeline connections, for a proxy...
	{ok, binary(), parser()}: on body, when a chunk has been parsed. To continue the parsing you must call hackney_http:execute/1 with the given parser().
	{done, binary()}: when the parsing is done. The binary given correpond to the non parsed part of the internal buffer.
	{error, term{}}: when an error happen

 Summary

 Types

 body_result/0

 header_result/0

 http_method/0

 http_reason/0

 http_version/0

 parser/0

 parser_option/0

 parser_options/0

 parser_result/0

 status/0

 uri/0

 Functions

 execute(Hparser)

 Execute the parser with the current buffer.

 execute(Hparser, Bin)

 Execute the parser with the new buffer

 get(Parser, Props)

 retrieve a parser property. Properties are

 parse_response_version(_, St)

 parser()

 Create a new HTTP parser. The parser will autodetect if the parded binary is a response or a request.

 parser(Options)

 create a new HTTP parser with options. By default the type of parsed binary will be detected.

 Types

 body_result/0

 -type body_result() :: {more, parser(), binary()} | {ok, binary(), parser()} | {done, binary()} | done.

 header_result/0

 -type header_result() :: {headers_complete, parser()} | {header, {binary(), binary()}, parser()}.

 http_method/0

 -type http_method() :: binary().

 http_reason/0

 -type http_reason() :: binary().

 http_version/0

 -type http_version() :: {integer(), integer()}.

 parser/0

 -type parser() ::
 #hparser{type :: atom(),
 max_line_length :: integer(),
 max_empty_lines :: integer(),
 empty_lines :: integer(),
 state :: atom(),
 buffer :: binary(),
 version :: {integer(), integer()} | undefined,
 method :: binary(),
 partial_headers :: list(),
 clen :: integer() | undefined | bad_int,
 te :: binary(),
 connection :: binary(),
 ctype :: binary(),
 location :: binary(),
 body_state :: atom() | tuple()}.

 parser_option/0

 -type parser_option() ::
 request | response | auto | {max_empty_lines, integer()} | {max_line_length, integer()}.

 parser_options/0

 -type parser_options() :: [parser_option()].

 parser_result/0

 -type parser_result() ::
 {response, http_version(), status(), http_reason(), parser()} |
 {request, http_method(), uri(), http_version(), parser()} |
 {more, parser()} |
 header_result() |
 body_result() |
 {error, term()}.

 status/0

 -type status() :: integer().

 uri/0

 -type uri() :: binary().

 Functions

 execute(Hparser)

 -spec execute(#hparser{type :: atom(),
 max_line_length :: integer(),
 max_empty_lines :: integer(),
 empty_lines :: integer(),
 state :: atom(),
 buffer :: binary(),
 version :: {integer(), integer()} | undefined,
 method :: binary(),
 partial_headers :: list(),
 clen :: integer() | undefined | bad_int,
 te :: binary(),
 connection :: binary(),
 ctype :: binary(),
 location :: binary(),
 body_state :: atom() | tuple()}) ->
 parser_result().

Execute the parser with the current buffer.

 execute(Hparser, Bin)

 -spec execute(#hparser{type :: atom(),
 max_line_length :: integer(),
 max_empty_lines :: integer(),
 empty_lines :: integer(),
 state :: atom(),
 buffer :: binary(),
 version :: {integer(), integer()} | undefined,
 method :: binary(),
 partial_headers :: list(),
 clen :: integer() | undefined | bad_int,
 te :: binary(),
 connection :: binary(),
 ctype :: binary(),
 location :: binary(),
 body_state :: atom() | tuple()},
 binary()) ->
 parser_result().

Execute the parser with the new buffer

 get(Parser, Props)

 -spec get(parser(), atom() | [atom()]) -> any().

retrieve a parser property. Properties are:
	buffer: internal buffer of the parser (non parsed)
	state: the current state (on_status, on_header, on_body, done)
	version: HTTP version
	content_length: content length header if any
	transfer_encoding: transfer encoding header if any
	content_type: content type header if any
	location: location header if any
	connection: connection header if any.

 parse_response_version(_, St)

 parser()

 -spec parser() -> parser().

Create a new HTTP parser. The parser will autodetect if the parded binary is a response or a request.

 parser(Options)

 -spec parser(parser_options()) -> parser().

create a new HTTP parser with options. By default the type of parsed binary will be detected.
Available options:
	auto : autodetect if the binary parsed is a response or a request (default).
	response: set the parser to parse a response
	request: set the parser to parse a request (server)
	{max_line_lenght, Max}: set the maximum size of a line parsed before we give up.
	{max_lines_empty, Max}: the maximum number of empty line we accept before the first line happen

hackney_http_connect

 Summary

 Types

 http_socket/0

 Functions

 close(_)

 Close a socks5 socket.

 connect(ProxyHost, ProxyPort, Opts)

 connect(ProxyHost, ProxyPort, Opts, Timeout)

 controlling_process(_, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(_, Packet)

 Send a packet on a socket.

 setopts(_, Opts)

 Set one or more options for a socket.

 shutdown(_, How)

 Immediately close a socket in one or two directions.

 sockname(_)

 Get the local address and port of a socket

 Types

 http_socket/0

 -type http_socket() :: {atom(), inet:socket()}.

 Functions

 close(_)

 -spec close(http_socket()) -> ok.

Close a socks5 socket.
See also: gen_tcp:close/1.

 connect(ProxyHost, ProxyPort, Opts)

 connect(ProxyHost, ProxyPort, Opts, Timeout)

 controlling_process(_, Pid)

 -spec controlling_process(http_socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 -spec peername(http_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 -spec recv(http_socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(_, Packet)

 -spec send(http_socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(_, Opts)

 -spec setopts(http_socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(_, How)

 -spec shutdown(http_socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(_)

 -spec sockname(http_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

hackney_local_tcp

 Summary

 Functions

 close(Socket)

 Close a TCP socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 setopts(Socket, Opts)

 Set one or more options for a socket.

 shutdown(Socket, How)

 Immediately close a socket in one or two directions.

 sockname(Socket)

 Get the local address and port of a socket

 Functions

 close(Socket)

 -spec close(inet:socket()) -> ok.

Close a TCP socket.
See also: gen_tcp:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 -spec controlling_process(inet:socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 -spec peername(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 -spec recv(inet:socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(Socket, Packet)

 -spec send(inet:socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(Socket, Opts)

 -spec setopts(inet:socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(Socket, How)

 -spec shutdown(inet:socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(Socket)

 -spec sockname(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

hackney_manager

 Summary

 Functions

 async_response_pid(Ref)

 cancel_request(Client)

 close_request(Client)

 code_change(OldVsn, Ring, Extra)

 controlling_process(Ref, Pid)

 get_state(Client)

 get_state(Ref, Fun)

 handle_call(_, From, Mstate)

 handle_cast(Msg, State)

 handle_error(Client)

 handle_info(Info, State)

 init(_)

 new_request(Client)

 start_async_response(Ref)

 start_link()

 stop_async_response(Ref)

 store_state(Client)

 store_state(Ref, NState)

 take_control(Ref, NState)

 terminate(Reason, State)

 update_state(Client)

 update_state(Ref, NState)

 with_async_response_pid(Ref, Fun)

 Functions

 async_response_pid(Ref)

 cancel_request(Client)

 close_request(Client)

 code_change(OldVsn, Ring, Extra)

 controlling_process(Ref, Pid)

 get_state(Client)

 get_state(Ref, Fun)

 handle_call(_, From, Mstate)

 handle_cast(Msg, State)

 handle_error(Client)

 handle_info(Info, State)

 init(_)

 new_request(Client)

 start_async_response(Ref)

 start_link()

 stop_async_response(Ref)

 store_state(Client)

 store_state(Ref, NState)

 take_control(Ref, NState)

 terminate(Reason, State)

 update_state(Client)

 update_state(Ref, NState)

 with_async_response_pid(Ref, Fun)

hackney_metrics

 Summary

 Functions

 get_engine()

 init()

 Functions

 get_engine()

 init()

hackney_multipart

module to encode/decode multipart

 Summary

 Types

 body_cont/0

 body_result/0

 cont/1

 end_of_part/0

 headers/0

 http_headers/0

 more/1

 parser/1

 part_parser/0

 part_result/0

 pattern/0

 patterns/0

 Functions

 boundary()

 decode_form(Boundary, Body)

 decode a multipart form.

 encode_form(Parts)

 encode a list of parts a multipart form. Parts can be under the form

 encode_form(Parts, Boundary)

 len_mp_stream(Parts, Boundary)

 get the size of a mp stream. Useful to calculate the content-length of a full multipart stream and send it as an identity transfer-encoding instead of chunked so any server can handle it.

 mp_data_header(_, Boundary)

 return the multipart header for a data

 mp_eof(Boundary)

 return the boundary ending a multipart

 mp_file_header(_, Boundary)

 return the multipart header for a file that will be sent later

 mp_header(Headers, Boundary)

 create a generic multipart header

 mp_mixed_header(_, Boundary)

 return the mixed multipart header

 parser(Boundary)

 Return a multipart parser for the given boundary.

 part(Content, Headers, Boundary)

 create a part

 Types

 body_cont/0

 -type body_cont() :: cont(more(body_result())).

 body_result/0

 -type body_result() :: {body, binary(), body_cont()} | end_of_part().

 cont/1

 -type cont(T) :: fun(() -> T).

 end_of_part/0

 -type end_of_part() :: {end_of_part, cont(more(part_result()))}.

 headers/0

 -type headers() :: {headers, http_headers(), body_cont()}.

 http_headers/0

 -type http_headers() :: [{binary(), binary()}].

 more/1

 -type more(T) :: T | {more, parser(T)}.

 parser/1

 -type parser(T) :: fun((binary()) -> T).

 part_parser/0

 -type part_parser() :: parser(more(part_result())).

 part_result/0

 -type part_result() :: headers() | eof.

 pattern/0

 -type pattern() :: {binary:cp(), non_neg_integer()}.

 patterns/0

 -type patterns() :: {pattern(), pattern()}.

 Functions

 boundary()

 -spec boundary() -> binary().

 decode_form(Boundary, Body)

 -spec decode_form(binary(), binary()) -> {ok, list()} | {error, term()}.

decode a multipart form.

 encode_form(Parts)

encode a list of parts a multipart form. Parts can be under the form:
	{file, Path} : to send a file
	{file, Path, ExtraHeaders} : to send a file with extra headers
	{file, Path, Name, ExtraHeaders}: to send a file with DOM element name and extra headers
	{mp_mixed, Name, Boundary} to send a mixed multipart.
	{mp_mixed_eof, Boundary}: to signal the end of the mixed multipart boundary.
	{Name, Data}: to send a custom content as a part
	{Name, Data, ExtraHeaders}: the same as above but with extra headers.

 encode_form(Parts, Boundary)

 -spec encode_form(list(), binary()) -> {binary(), integer()}.

 len_mp_stream(Parts, Boundary)

get the size of a mp stream. Useful to calculate the content-length of a full multipart stream and send it as an identity transfer-encoding instead of chunked so any server can handle it.
Calculated Parts can be under the form:
	{file, Path} : to send a file
	{file, Path, ExtraHeaders} : to send a file with extra headers
	{file, Path, Name, ExtraHeaders} : to send a file with DOM element name and extra headers
	{mp_mixed, Name, Boundary} to send a mixed multipart. multipart boundary.
	{Name, DataLen}: to send a custom content as a part
	{Name, DataLen, ExtraHeaders}: the same as above but with extra headers.

 mp_data_header(_, Boundary)

 -spec mp_data_header({Name :: binary(), DataLen :: integer()} |
 {Name :: binary(), DataLen :: integer(), ExtraHeaders :: [{binary(), binary()}]} |
 {Name :: binary(),
 DataLen :: integer(),
 {Disposition :: binary(), Params :: [{binary(), binary()}]},
 ExtraHeaders :: [{binary(), binary()}]},
 Boundary :: binary()) ->
 {binary(), DataLen :: integer()}.

return the multipart header for a data

 mp_eof(Boundary)

return the boundary ending a multipart

 mp_file_header(_, Boundary)

 -spec mp_file_header({file, Path :: binary()} |
 {file, Path :: binary(), ExtraHeaders :: [{binary(), binary()}]} |
 {file, Path :: binary(), Name :: binary(), ExtraHeaders :: [{binary(), binary()}]} |
 {file,
 Path :: binary(),
 {Disposition :: binary(), Params :: [{binary(), binary()}]},
 ExtraHeaders :: [{binary(), binary()}]},
 Boundary :: binary()) ->
 {binary(), FileSize :: integer()}.

return the multipart header for a file that will be sent later

 mp_header(Headers, Boundary)

create a generic multipart header

 mp_mixed_header(_, Boundary)

 -spec mp_mixed_header({Name :: binary(), MixedBoundary :: binary()}, Boundary :: binary()) ->
 {binary(), 0}.

return the mixed multipart header

 parser(Boundary)

 -spec parser(binary()) -> part_parser().

Return a multipart parser for the given boundary.

 part(Content, Headers, Boundary)

create a part

hackney_pool

pool of sockets connections

 Summary

 Functions

 checkin(_, Socket)

 release a socket in the pool

 checkout(Host, Port, Transport, Client)

 fetch a socket from the pool

 child_spec(Name, Options0)

 return a child spec suitable for embeding your pool in the supervisor

 code_change(OldVsn, State, Extra)

 count(Name)

 get the number of connections in the pool

 count(Name, _)

 get the number of connections in the pool for {Host0, Port, Transport}

 find_pool(Name)

 get_stats(Pool)

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(_, State)

 init(_)

 max_connections(Name)

 get max pool size

 notify(Pool, Msg)

 set_max_connections(Name, NewSize)

 change the pool size

 set_timeout(Name, NewTimeout)

 change the connection timeout

 start()

 start_link(Name, Options0)

 start_pool(Name, Options)

 start a pool

 stop_pool(Name)

 stop a pool

 terminate(Reason, State)

 timeout(Name)

 get timeout

 Functions

 checkin(_, Socket)

release a socket in the pool

 checkout(Host, Port, Transport, Client)

fetch a socket from the pool

 child_spec(Name, Options0)

return a child spec suitable for embeding your pool in the supervisor

 code_change(OldVsn, State, Extra)

 count(Name)

get the number of connections in the pool

 count(Name, _)

get the number of connections in the pool for {Host0, Port, Transport}

 find_pool(Name)

 get_stats(Pool)

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(_, State)

 init(_)

 max_connections(Name)

get max pool size

 notify(Pool, Msg)

 set_max_connections(Name, NewSize)

change the pool size

 set_timeout(Name, NewTimeout)

change the connection timeout

 start()

 start_link(Name, Options0)

 start_pool(Name, Options)

start a pool

 stop_pool(Name)

stop a pool

 terminate(Reason, State)

 timeout(Name)

get timeout

hackney_pool_handler behaviour

 Summary

 Types

 client/0

 host/0

 Callbacks

 checkin/2

 checkout/4

 notify/2

 start/0

 Types

 client/0

 -type client() ::
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}.

 host/0

 -type host() :: binary() | string().

 Callbacks

 checkin/2

 -callback checkin({Info :: any(), CheckingReference :: any(), Owner :: pid(), Transport :: atom()},
 Socket :: inet:socket()) ->
 ok | {error, Reason :: any()}.

 checkout/4

 -callback checkout(Host :: host(), Port :: integer(), Transport :: atom(), Client :: client()) ->
 {ok,
 {Info :: any(), CheckingReference :: any(), Owner :: pid(), Transport :: atom()},
 Socket :: inet:socket()} |
 {error, Reason :: any()}.

 notify/2

 -callback notify(Pool :: atom(), Message :: any()) -> ok.

 start/0

 -callback start() -> ok | {error, Reason :: any()}.

hackney_request

module handling the request

 Summary

 Functions

 default_ua()

 encode_form(KVs)

 encode a list of properties in a form.

 end_stream_body(Client)

 is_default_port(Client)

 location(Client)

 make_multipart_stream(Parts, Boundary)

 perform(Client0, _)

 send(Client, Data)

 send_chunk(Client, Data)

 sendfile(FileName, Opts, Client)

 stream_body(Msg, Client)

 stream_multipart(File, Client)

 stream multipart

 Functions

 default_ua()

 encode_form(KVs)

encode a list of properties in a form.

 end_stream_body(Client)

 is_default_port(Client)

 location(Client)

 make_multipart_stream(Parts, Boundary)

 -spec make_multipart_stream(list(), binary()) -> {fun(), list()}.

 perform(Client0, _)

 send(Client, Data)

 send_chunk(Client, Data)

 sendfile(FileName, Opts, Client)

 stream_body(Msg, Client)

 stream_multipart(File, Client)

stream multipart

hackney_response

module handling the response

 Summary

 Types

 response_state/0

 Functions

 body(Client)

 Return the full body sent with the request.

 body(MaxLength, Client)

 Return the full body sent with the request as long as the body length doesn't go over MaxLength.

 close(Client)

 expect_response(Client)

 handle Expect header

 maybe_close(Client)

 skip_body(Client)

 skip_multipart(Client)

 Skip a part returned by the multipart parser.

 start_response(Client)

 Start the response It parse the request lines and headers.

 stream_body(Client)

 stream_multipart(Client)

 stream a multipart response

 Types

 response_state/0

 -type response_state() :: start | waiting | on_status | on_headers | on_body.

 Functions

 body(Client)

 -spec body(#client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}) ->
 {ok,
 binary(),
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}} |
 {error, atom()}.

Return the full body sent with the request.

 body(MaxLength, Client)

 -spec body(non_neg_integer() | infinity,
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}) ->
 {ok,
 binary(),
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}} |
 {error, atom()}.

Return the full body sent with the request as long as the body length doesn't go over MaxLength.
This is most useful to quickly be able to get the full body while avoiding filling your memory with huge request bodies when you're not expecting it.
When the response is larger than MaxLength, this function will return the body it received up to the last chunk, which might be a bit more than MaxLength.

 close(Client)

 expect_response(Client)

handle Expect header

 maybe_close(Client)

 skip_body(Client)

 -spec skip_body(#client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}) ->
 {ok,
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}} |
 {skip,
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}} |
 {error, atom()}.

 skip_multipart(Client)

 -spec skip_multipart(Client) -> {ok, Client}
 when
 Client ::
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}.

Skip a part returned by the multipart parser.
This function repeatedly calls multipart_data/1 until {end_of_part, Req} or {eof, Req} is parsed.

 start_response(Client)

Start the response It parse the request lines and headers.

 stream_body(Client)

 stream_multipart(Client)

 -spec stream_multipart(#client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}) ->
 {headers,
 list(),
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}} |
 {body,
 binary(),
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}} |
 {eof | end_of_part | mp_mixed | mp_mixed_eof,
 #client{start_time :: term(),
 mod_metrics :: term(),
 transport :: term(),
 host :: term(),
 port :: term(),
 netloc :: term(),
 options :: term(),
 socket :: term(),
 socket_ref :: term(),
 request_ref :: term(),
 dynamic :: term(),
 pool_handler :: term(),
 recv_timeout :: term(),
 follow_redirect :: term(),
 max_redirect :: term(),
 force_redirect :: term(),
 retries :: term(),
 redirect :: term(),
 location :: term(),
 parser :: term(),
 headers :: term(),
 state :: term(),
 response_state :: term(),
 mp_boundary :: term(),
 req_type :: term(),
 expect :: term(),
 async :: term(),
 with_body :: term(),
 max_body :: term(),
 stream_to :: term(),
 send_fun :: term(),
 body_state :: term(),
 multipart :: term(),
 req_chunk_size :: term(),
 buffer :: term(),
 partial_headers :: term(),
 version :: term(),
 clen :: term(),
 te :: term(),
 connection :: term(),
 method :: term(),
 path :: term(),
 ctype :: term()}}.

stream a multipart response
Use this function for multipart streaming. For each part in the response, this function returns {headers, Headers, Req} followed by a sequence of {body, Data, Req} tuples and finally {end_of_part, Req}. When there is no part to parse anymore, {eof, Req} is returned.

hackney_socks5

socks 5 transport

 Summary

 Types

 socks5_socket/0

 Functions

 close(_)

 Close a socks5 socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(_, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(_, Packet)

 Send a packet on a socket.

 setopts(_, Opts)

 Set one or more options for a socket.

 shutdown(_, How)

 Immediately close a socket in one or two directions.

 sockname(_)

 Get the local address and port of a socket

 Types

 socks5_socket/0

 -type socks5_socket() :: {atom(), inet:socket()}.

 Functions

 close(_)

 -spec close(socks5_socket()) -> ok.

Close a socks5 socket.
See also: gen_tcp:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(_, Pid)

 -spec controlling_process(socks5_socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(_)

 -spec peername(socks5_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(_, Length, Timeout)

 -spec recv(socks5_socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(_, Packet)

 -spec send(socks5_socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(_, Opts)

 -spec setopts(socks5_socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(_, How)

 -spec shutdown(socks5_socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(_)

 -spec sockname(socks5_socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

hackney_ssl

 Summary

 Functions

 check_hostname_opts(Host0)

 cipher_opts()

 close(Socket)

 Close a TCP socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts0, Timeout)

 controlling_process(Socket, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 setopts(Socket, Opts)

 Set one or more options for a socket.

 shutdown(Socket, How)

 Immediately close a socket in one or two directions.

 sockname(Socket)

 Get the local address and port of a socket

 Functions

 check_hostname_opts(Host0)

 cipher_opts()

 close(Socket)

 -spec close(ssl:sslsocket()) -> ok.

Close a TCP socket.
See also: ssl:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts0, Timeout)

 controlling_process(Socket, Pid)

 -spec controlling_process(ssl:sslsocket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: ssl:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 -spec peername(ssl:sslsocket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: ssl:peername/1.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 -spec recv(ssl:sslsocket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: ssl:recv/3.

 send(Socket, Packet)

 -spec send(ssl:sslsocket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: ssl:send/2.

 setopts(Socket, Opts)

 -spec setopts(ssl:sslsocket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: ssl:setopts/2.

 shutdown(Socket, How)

 -spec shutdown(ssl:sslsocket(), read | write | read_write) -> ok | {error, any()}.

Immediately close a socket in one or two directions.
See also: ssl:shutdown/2.

 sockname(Socket)

 -spec sockname(ssl:sslsocket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: ssl:sockname/1.

hackney_stream

 Summary

 Functions

 async_recv(Parent, Owner, Ref, Client, Buffer)

 init(Parent, Owner, Ref, Client)

 maybe_continue(Parent, Owner, Ref, Client)

 start_link(Owner, Ref, Client)

 system_code_change(Misc, _, _, _)

 system_continue(_, _, _)

 system_terminate(Reason, _, _, _)

 Functions

 async_recv(Parent, Owner, Ref, Client, Buffer)

 init(Parent, Owner, Ref, Client)

 maybe_continue(Parent, Owner, Ref, Client)

 start_link(Owner, Ref, Client)

 system_code_change(Misc, _, _, _)

 system_continue(_, _, _)

 system_terminate(Reason, _, _, _)

 -spec system_terminate(any(), _, _, _) -> no_return().

hackney_sup

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

hackney_tcp

 Summary

 Functions

 close(Socket)

 Close a TCP socket.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 Assign a new controlling process Pid to Socket.

 messages(_)

 Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 Return the address and port for the other end of a connection.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 setopts(Socket, Opts)

 Set one or more options for a socket.

 shutdown(Socket, How)

 Immediately close a socket in one or two directions.

 sockname(Socket)

 Get the local address and port of a socket

 Functions

 close(Socket)

 -spec close(inet:socket()) -> ok.

Close a TCP socket.
See also: gen_tcp:close/1.

 connect(Host, Port, Opts)

 connect(Host, Port, Opts, Timeout)

 controlling_process(Socket, Pid)

 -spec controlling_process(inet:socket(), pid()) -> ok | {error, closed | not_owner | atom()}.

Assign a new controlling process Pid to Socket.
See also: gen_tcp:controlling_process/2.

 messages(_)

Atoms used to identify messages in {active, once | true} mode.

 peername(Socket)

 -spec peername(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Return the address and port for the other end of a connection.
See also: inet:peername/1.

 recv(Socket, Length)

 recv(Socket, Length, Timeout)

 -spec recv(inet:socket(), non_neg_integer(), timeout()) -> {ok, any()} | {error, closed | atom()}.

Receive a packet from a socket in passive mode.
See also: gen_tcp:recv/3.

 send(Socket, Packet)

 -spec send(inet:socket(), iolist()) -> ok | {error, atom()}.

Send a packet on a socket.
See also: gen_tcp:send/2.

 setopts(Socket, Opts)

 -spec setopts(inet:socket(), list()) -> ok | {error, atom()}.

Set one or more options for a socket.
See also: inet:setopts/2.

 shutdown(Socket, How)

 -spec shutdown(inet:socket(), read | write | read_write) -> ok.

Immediately close a socket in one or two directions.
See also: gen_tcp:shutdown/2.

 sockname(Socket)

 -spec sockname(inet:socket()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, atom()}.

Get the local address and port of a socket
See also: inet:sockname/1.

hackney_trace

 Summary

 Types

 filename/0

 trace_level/0

 trace_type/0

 Functions

 disable()

 stop tracing

 enable(Level, File)

 start tracing start tracing at level Level and send the result either to the file File, the port Port or to a trace handler.

 report_event(Severity, Label, Service, Content)

 set_level(Level)

 change the trace level when tracing has already started.

 Types

 filename/0

 -type filename() :: string().

 trace_level/0

 -type trace_level() :: max | min | integer().

 trace_type/0

 -type trace_type() :: io | filename() | port() | {fun(), any()}.

 Functions

 disable()

 -spec disable() -> ok.

stop tracing

 enable(Level, File)

 -spec enable(trace_level(), trace_type()) -> ok.

start tracing start tracing at level Level and send the result either to the file File, the port Port or to a trace handler.
Note: that it starts a tracer server. When Destination is the atom io (or the tuple {io, Verbosity}), %% all (printable) inets trace events (trace_ts events which has %% Severity within Limit) will be written to stdout using io:format.

 report_event(Severity, Label, Service, Content)

 set_level(Level)

 -spec set_level(trace_level()) -> ok | {error, term()}.

change the trace level when tracing has already started.

hackney_url

module to manage URLs.

 Summary

 Types

 hackney_url/0

 qs_opt/0

 qs_vals/0

 Functions

 fix_path(Path)

 idnconvert_hostname(Host)

 make_url(Url, Path, Query)

 Construct an URL from a base URL, a path and a list of properties to give to the URL.

 normalize(URL)

 Normalizes the encoding of an URL. Use the hackney_url:pathencode/1 to encode an URL.

 normalize(URL, Fun)

 Normalizes the encoding of an URL.

 parse_qs(Bin)

 parse_url(URL)

 Parse an URL and return a #hackney_url record.

 pathencode(Path)

 Encode an URL path.

 property(_, URL)

 qs(KVs)

 Encode query properties to binary.

 qs(KVs, Opts)

 Encode query properties to binary. Opts are passed to urlencode/2

 transport_scheme(_)

 unparse_url(Hackney_url)

 urldecode(Bin)

 Equivalent to urldecode(Bin, crash).

 urldecode(Bin, OnError)

 Decode an URL encoded binary. The second argument specifies how to handle percent characters that are not followed by two valid hex characters. Use skip to ignore such errors, if crash is used the function will fail with the reason badarg.

 urlencode(Bin)

 URL encode a string binary.

 urlencode(Bin, Opts)

 URL encode a string binary. The noplus option disables the default behaviour of quoting space characters, \s, as +. The lower option overrides the default behaviour of writing hex numbers using uppercase letters to using lowercase letters instead.

 Types

 hackney_url/0

 -type hackney_url() ::
 #hackney_url{transport :: atom(),
 scheme :: atom(),
 netloc :: binary(),
 raw_path :: binary() | undefined,
 path :: binary() | undefined | nil,
 qs :: binary(),
 fragment :: binary(),
 host :: string(),
 port :: integer() | undefined,
 user :: binary(),
 password :: binary()}.

 qs_opt/0

 -type qs_opt() :: noplus | upper.

 qs_vals/0

 -type qs_vals() :: [{binary() | atom() | list() | integer(), binary() | true}].

 Functions

 fix_path(Path)

 idnconvert_hostname(Host)

 make_url(Url, Path, Query)

 -spec make_url(binary(), binary() | [binary()], binary() | qs_vals()) -> binary().

Construct an URL from a base URL, a path and a list of properties to give to the URL.

 normalize(URL)

 -spec normalize(URL) -> NormalizedUrl
 when URL :: binary() | list() | hackney_url(), NormalizedUrl :: hackney_url().

Normalizes the encoding of an URL. Use the hackney_url:pathencode/1 to encode an URL.

 normalize(URL, Fun)

 -spec normalize(URL, Fun) -> NormalizedUrl
 when
 URL :: binary() | list() | hackney_url(),
 Fun :: fun(),
 NormalizedUrl :: hackney_url().

Normalizes the encoding of an URL.

 parse_qs(Bin)

 -spec parse_qs(binary()) -> qs_vals().

 parse_url(URL)

 -spec parse_url(URL :: binary() | list()) -> hackney_url().

Parse an URL and return a #hackney_url record.

 pathencode(Path)

 -spec pathencode(binary() | list()) -> binary().

Encode an URL path.

 property(_, URL)

 qs(KVs)

 -spec qs(qs_vals()) -> binary().

Encode query properties to binary.

 qs(KVs, Opts)

 -spec qs(qs_vals(), [qs_opt()]) -> binary().

Encode query properties to binary. Opts are passed to urlencode/2

 transport_scheme(_)

 unparse_url(Hackney_url)

 urldecode(Bin)

 -spec urldecode(binary()) -> binary().

Equivalent to urldecode(Bin, crash).
Decode an URL encoded binary.

 urldecode(Bin, OnError)

 -spec urldecode(binary(), crash | skip) -> binary().

Decode an URL encoded binary. The second argument specifies how to handle percent characters that are not followed by two valid hex characters. Use skip to ignore such errors, if crash is used the function will fail with the reason badarg.

 urlencode(Bin)

 -spec urlencode(binary() | string()) -> binary().

URL encode a string binary.

 urlencode(Bin, Opts)

 -spec urlencode(binary() | string(), [qs_opt()]) -> binary().

URL encode a string binary. The noplus option disables the default behaviour of quoting space characters, \s, as +. The lower option overrides the default behaviour of writing hex numbers using uppercase letters to using lowercase letters instead.

hackney_util

 Summary

 Functions

 filter_options(Tail, AllowedKeys, Acc)

 filter a proplists and only keep allowed keys

 is_ipv6(Host)

 maybe_apply_defaults(Rest, Options)

 merge_opts(Rest, Options)

 mod_metrics()

 privdir()

 require(Rest)

 Start the given applications if they were not already started.

 set_option_default(Opts, Key, Value)

 set the default options in a proplists if not defined

 to_atom(V)

 to_int(S)

 Functions

 filter_options(Tail, AllowedKeys, Acc)

 -spec filter_options([{atom(), any()} | {raw, any(), any(), any()}], [atom()], Acc) -> Acc
 when Acc :: [any()].

filter a proplists and only keep allowed keys

 is_ipv6(Host)

 maybe_apply_defaults(Rest, Options)

 merge_opts(Rest, Options)

 mod_metrics()

 privdir()

 require(Rest)

 -spec require([module()]) -> ok.

Start the given applications if they were not already started.

 set_option_default(Opts, Key, Value)

 -spec set_option_default(Opts, atom(), any()) -> Opts when Opts :: [{atom(), any()}].

set the default options in a proplists if not defined

 to_atom(V)

 to_int(S)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

