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Fig. 1: AINA is a framework for learning multi-fingered policies from in-the-wild human data collected with smart glasses, without requiring
any robot data (including online corrections or simulation). The workflow is as follows: a human wears the Aria 2 glasses and collects
in-the-wild demonstrations on any surface with arbitrary backgrounds (left), then records a single demonstration in the robot deployment
space (middle), after which point-based policies are trained and directly deployed on the robot (right). With an average of just 15 minutes
of human video collection effort, AINA is able to train autonomous robot policies.

Abstract—Learning multi-fingered robot policies from humans
performing daily tasks in natural environments has long been a
grand goal in the robotics community. Achieving this would mark
significant progress toward generalizable robot manipulation
in human environments, as it would reduce the reliance on
labor-intensive robot data collection. Despite substantial efforts,
progress toward this goal has been bottle-necked by the embod-
iment gap between humans and robots, as well as by difficulties
in extracting relevant contextual and motion cues that enable
learning of autonomous policies from in-the-wild human videos.
We claim that with simple yet sufficiently powerful hardware
for obtaining human data and our proposed framework AINA,
we are now one significant step closer to achieving this dream.
AINA enables learning multi-fingered policies from data collected
by anyone, anywhere, and in any environment using Aria Gen
2 glasses. These glasses are lightweight and portable, feature
a high-resolution RGB camera, provide accurate on-board 3D
head and hand poses, and offer a wide stereo view that can be
leveraged for depth estimation of the scene. This setup enables
the learning of 3D point-based policies for multi-fingered hands
that are robust to background changes and can be deployed
directly without requiring any robot data (including online
corrections, reinforcement learning, or simulation). We compare
our framework against prior human-to-robot policy learning
approaches, ablate our design choices, and demonstrate results
across nine everyday manipulation tasks. Robot rollouts are best
viewed on our website: https://aina-robot.github.io.

Correspondence to irmakguzey@nyu.edu.

I. INTRODUCTION
“The most profound technologies are those
that disappear. They weave themselves into the
fabric of everyday life until they are indistin-
guishable from it.”

— Mark Weiser, 1991
Robots autonomously performing diverse manipulation

tasks by watching humans go about their daily lives has been
a dream in Artificial Intelligence (AI) for decades. However,
this remains challenging due to the embodiment gap between
humans and robots, as well as the disparity between human
video views and the sensor perspectives of a robot. To truly
realize this dream for generalizable dexterous manipulation,
we must overcome these challenges with general approaches
that can leverage large-scale human video data. Encouragingly,
this vision is now closer to reality with the development of
increasingly more human-like robot embodiments [3, 4] and
the potential widespread adoption of wearable devices such as
smart glasses, which are lightweight, easy to wear in daily life
and equipped with complex sensing capabilities that provide
both an egocentric perspective and rich annotations. Building
on this promise, we develop an approach to learn dexterous
manipulation directly from smart-glass human data, without
requiring any additional robot interaction data.

We are, of course, not the first to consider this setting of
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Fig. 3: Comparison of AINA’s capabilities with some prior human-to-robot learning frameworks. In-The-Wild indicates whether data can
be easily collected in natural settings outside the lab. Sensors describes the sensory outputs available from the data collection devices.
Learning Extractions specifies which extractions can be utilized with the provided sensors to improve learning. Data Embodiment refers to
the embodiment of the collected data (robot vs. human). Here, we also count online corrections [1] and reinforcement learning [2] performed
on the robot as part of the robot data. Robot Embodiment indicates which type of robot embodiment the framework targets (two-fingered
gripper vs. multi-fingered hand). In AINA, we choose point-based approaches for their robustness to background variations, enabling robot
learning from in-the-wild data for dexterous hands. This is made possible by the advanced sensing capabilities of the Aria Gen 2 glasses,
which provide all the necessary 3D extractions.

learning manipulation from human videos. Prior work has
attempted to address these challenges by collecting human
videos in structured settings, often within the exact scenarios
of robot deployment [5, 6, 7]. However, such approaches
are difficult to scale to diverse environments, as they require
data collection for each deployment scenario. Other efforts
leverage large-scale, in-the-wild web videos [8, 9, 10, 11], but
they have not been successfully deployed on multi-fingered
hands, since extracting the necessary annotations—such as
reliable 3D hand poses—for learning dexterous policies is
far more challenging in these settings. Smart-glasses data,
offers the best of both worlds: it preserves scalability by
being naturally collected as people go about daily life, while
providing high-resolution egocentric imagery, stereo vision for
3D perception, and reliable hand-pose annotations via in-built
software [12]. These characteristics make smart-glass data far
richer and more robot manipulation-relevant than web video,
while avoiding the scalability bottlenecks of lab-constrained
data collection.

Thus, leveraging the complex sensing capabilities of smart
glasses, in particular of Aria Gen 2, we develop AINA: a
simple approach for learning a closed-loop dexterous manipu-
lation policy from just human videos. AINA (english. Mirror)
refers to mirroring human videos in a robot’s context and
is based on a simple intuition: By lifting human videos to
approximate 4D via hand-keypoint reconstruction, stereo depth
estimation, and 3D object pointcloud extraction, we can re-
purpose 3D policy learning approaches for learning to predict
future hand keypoints, and use the same policy for robot
manipulation. By operating in the space of 3D keypoints for
the hand, and 3D pointclouds for objects, we minimize the
human-robot domain gap when deploying the AINA policy on
a dexterous robot hand, while being trained with only human
demonstrations.

Concretely, AINA operates as follows: (a) humans wearing
smart glasses collect data in arbitrary environments with
any background or viewpoint, (b) then they collect a single
video demonstration in the robot’s environment, and (c) the
multi-fingered robot learns policies that generalize across both
spatial configurations and object variations. We evaluate AINA
on nine tasks and summarize our contributions as follows:

1) AINA is the first framework that learns policies for multi-
fingered hands without using any robot data, including no
use of simulation (Section III).

2) AINA leverages recent advances in computer vision tech-
niques and smart glasses to accurately track hand and
objects in 3D and learn closed-loop policies to transfer
them to the robot environment.

In Section IV, we show that AINA outperforms existing
human-to-robot learning approaches demonstrating the effec-
tiveness of learning manipulation from human videos alone
through a simple framework operating on rich sensing from
smart glasses. Robot videos are available on our website:
https://aina-robot.github.io.

II. RELATED WORKS

AINA draws inspiration from extensive research in dexter-
ous manipulation, learning from human videos, and imitation
learning. Our aim is to develop a simple framework for closed-
loop policy learning capable of performing diverse everyday
manipulation tasks with dexterous multi-fingered hands. We
highlight some of the comparisons with prior works in Fig. 3
and describe them below.

a) Robot Learning with Non-Robot Datasets: Since
robot interaction data collection is challenging due to opera-
tional constraints [13, 14], thanks to advances in representation
learning [15, 16], motion prediction [17, 18], and hand–object
reconstruction [19, 20], many approaches now leverage non-
robot datasets such as human videos and images. These

https://aina-robot.github.io


(a) Data Collection and Processing (b) Point-Based Policy Learning
. . .

Vector Neuron MLP

Learned positional encoding

+

θ

Transformer Encoder

MLP

. . .

2D Object Tracking

Depth Estimation

Rectified SLAM frames

FoundationStereo

IK

Object Points Fingertips

𝒥̂Predicted Arm Hand Joint Angles

Fig. 4: Illustration of our overall AINA framework. On the left, we show how the data is processed: the human hand pose is extracted directly
by the Aria Gen 2 glasses, and stereo depth is estimated from the surrounding SLAM camera frames. This enables the 3D policy learning
methods on the right to succeed while remaining robust to background clutter.

approaches differ both in the type of human data used—in-
domain vs. in-the-wild—and in what is extracted or learned
from such data.

In-domain demonstrations, collected in the same environ-
ment as deployment, allow rich extractions like 3D hand
poses and object points [6, 7, 2, 5], but require new data per
deployment and are thus hard to scale. In contrast, in-the-wild
human datasets [21, 22, 23] support broader generalization,
with works focusing on visual backbones [24, 25, 26] or high-
level cues such as hand-object trajectories [10, 27, 11] and
affordances [28, 9, 29]. Yet, without reliable low-level signals
like 3D hand pose, these methods often sacrifice accuracy or
need additional demonstrations during deployment [11].

More recently, smart glasses [30] have simplified data
collection [31, 32], enabling richer extractions and better gen-
eralization which AINA builds upon. However, most of these
works focus on two-finger grippers, where manipulation can
be modeled simpler. In AINA, we use Aria Gen 2 glasses [33]
for scalable human data collection, but uniquely demonstrate
policy learning from purely human demonstrations for dexter-
ous multi-fingered robot hands.

b) Dexterous Manipulation from Human Data: Early
research on dexterous manipulation relied on sim-to-real trans-
fer [34, 35] or teleoperation for data collection [13, 36, 14, 37],
but these approaches are limited either by sim-to-real gaps or
by the extensive human effort required for teleoperation. To
address these challenges and reduce dependence on large-scale
robot demonstrations, recent work has shifted toward learning
from human data. However, leveraging large-scale datasets is
harder for multi-fingered hands due to the lack of annotations
needed for extracting reliable signals. As a result, most prior
works have collected their own human data to train poli-
cies. Some collected in-domain human videos and extracted
3D hand poses [2, 38], while others gathered in-the-wild
demonstrations using portable custom hardware with multiple

cameras and hand-pose estimators [1, 39]. While promising,
all of these approaches incorporated some robot data, obtained
either through teleoperation [39] or online corrections [2, 1].
Although such robot data can help in complex dexterous
tasks—particularly given the absence of force feedback in
human demonstrations—in AINA we demonstrate how we
can learn to perform everyday manipulation activities with
dexterous multi-fingered hands with just offline human videos
captured through Aria glasses, without using any external
sensors, mocap markers, or exo-skeletons.

c) Policy Architectures for Imitation Learning: Going
beyond the standard of 2D image-based policies [40, 24,
41] for imitation, recent works have proposed 3D policy
architectures that exploit geometric structure for manipula-
tion [42, 43, 44], yielding improved generalization to cluttered
scenes and complex object interactions. Beyond raw pixels and
scene point clouds, some approaches incorporate intermediate
object-centric representations such as keypoints or tracks.
PointPolicy [7] learns manipulation policies from 3D hand and
object keypoints, while Track2Act [10] predicts future dense
object tracks from video datasets and trains track-conditioned
policies. These object-centric methods highlight the benefits of
embodiment-agnostic cues for bridging human and robot do-
mains. Building on this insight, our proposed approach, AINA
extends 3D imitation learning frameworks by extracting hand
keypoints and 3D object flow from human videos, enabling
policies that generalize across embodiments and leverages
(non-robot) human data for dexterous manipulation.

III. METHOD

A. Overview

AINA is a framework for learning closed-loop policies from
in-the-wild human demonstrations collected with Aria Gen
2 glasses, without requiring any robot data. Our framework
consists of three high-level steps: (a) a human collects in-the-



wild video demonstrations on arbitrary surfaces using the Aria
Gen 2 glasses, along with a single in-scene video in the robot’s
environment; (b) the dataset is processed to extract 3D object
tracks and hand fingertip points, which are then aligned to
establish a uniform reference frame with the robot; and (c)
point-based policies are trained and deployed on a single-arm
hand robot system. We describe the overall structure of our
framework in Fig. 4 and describe the assumptions, challenges,
and details in this section.

a) Assumptions: In AINA, our methodology is guided by
two key assumptions: (a) access to a calibrated scene to ensure
a uniform operational space. For this, we perform hand–eye
calibration to compute the extrinsic matrix of cameras on the
robot setup with respect to the robot base. This process is
straightforward, performed only once, and takes approximately
5–10 minutes during the initial setup of the robot. (b) access
to a single in-scene demonstration along with multiple in-
the-wild demonstrations. Both types of demonstration are
collected by humans (without using the robot). The in-scene
demonstration takes less than a minute to collect, while the
in-the-wild demonstrations take about 10 minutes in total for
50 demos per task.

b) Challenges: Unlike prior works that artificially con-
strain hand motions to be robot-like [45] or require additional
alignment hardware such as ArUco markers [32], our approach
considers in-the-wild human videos as natural interactions.
Our method does not require prior knowledge of the distance
to manipulated objects, and it places no restrictions on the
hand motions of the data collectors [7]. These relaxations
introduce challenges, as the hand motions are more varied and
less structured.

B. Collecting and Processing Smart Glass Data

1) Data Collection: AINA uses Project Aria Gen 2 [33]
glasses to collect in-the-wild human demonstrations. The
glasses are equipped with a front-facing RGB camera, four
SLAM cameras positioned around the frame, and multiple
IMUs. These sensors enable real-time estimation of the user’s
head pose as well as left and right hand poses [12]. The
head pose is defined with respect to a world frame arbitrarily
assigned at initialization. This world frame is initialized using
the gravity vector measured by the IMUs [30, 33], ensuring
that its z-axis is aligned with gravity. For each task, we collect
50 in-the-wild demonstrations using these glasses and record
the camera streams along with head and hand pose estimates
at 10 Hz.

During data collection, we do not assume any specific height
for the surfaces where humans manipulate the objects. As a
result, we need to ground in-the-wild demonstrations within
the robot’s scene. To address this, we collect a single in-
scene demonstration using the RGB-D cameras in the robot
environment. We estimate the hand pose in 2D from both
camera views using Hamer [46, 47], and then triangulate these
estimates to obtain the 3D pose [7, 6]. We collect this in-scene
demonstration at 10 Hz.

2) Processing and Object Tracking: AINA uses object point
clouds as observations during policy learning. This represen-
tation makes the observations invariant to background changes
and visual differences between humans and robots. To obtain
these object point clouds, we leverage off-the-shelf computer
vision models. For each demonstration, we first segment the
objects of interactions in the initial frame using a language
prompt with Grounded-SAM [48]. The language prompts used
for each task are described in the Appendix A. Next, we track
the segmented objects across frames using CoTracker [49],
which produces 2D object points for each demonstration.
Finally, given per-frame depth, we unproject these 2D points
into 3D, effectively obtaining 3D point object point clouds
across time. While this process is straightforward for in-
scene demonstrations, the Aria glasses do not provide depth.
Therefore, for in-the-wild demonstrations, we use Foundation-
Stereo [50], a framework that estimates a disparity map from
rectified stereo images and the baseline between the cameras.
For this, we use streams from the two front-facing SLAM
cameras, rectify them, and use the translation norm provided
by the Aria glasses as the baseline B. These inputs are passed
to FoundationStereo to obtain a disparity map d with respect
to the left SLAM camera. Using classical stereo geometry, the
depth relative to the left frame, Z, is then recovered as:

Z =
f ·B
d

,

where f is the focal length of the left camera. 2D object
tracks can then be unprojected to this estimated depth for
in-the-wild demonstrations. For consistency, we transform all
in-scene points into the robot base frame and all in-the-
wild demonstrations into the world frame assigned during
data collection. This ensures that all points lie on a similar
horizontal plane since Aria glasses use the gravity vector to
assign the world frame (explained in Section III-B1).

3) Domain Alignment: 3D object tracks calculated with
respect to the Aria glasses vary across demonstrations in the
in-the-wild dataset, particularly due to differences in the height
of the manipulated objects or the user collecting the data.
To address this issue, we transform all 3D points into the
robot base frame before training policies, using the in-scene
demonstrations as an anchor.

Each demonstration consists of a trajectory of object points
Ot ∈ RN×3 and fingertip points F t ∈ R5×3, where N is
the number of objects, fixed at 500 across all tasks. We refer
to in-the-wild trajectories as Tw = {Ot

w,F t
w} and in-scene

trajectories as Ts = {Ot
s,F t

s}. To transform these trajectories
into a uniform space, given a single in-scene trajectory Ts
and an in-the-wild trajectory Tw, we compute the translation
between the centroids of the object points in their first frames,
∆O = O0

s −O0
w. We then translate the in-the-wild trajectory

by this offset, yielding T̂w = {Ot + ∆O,F t + ∆O}. This
aligns the centroids of the object point clouds. However,
since the world frame’s rotation around gravity is assigned
arbitrarily, relying solely on this translation can lead to large
variations in z-axis orientation. This may cause demonstrations



where the initial hand pose is fully rotated and object positions
appear swapped. Figure illustrating this issue can be found on
https://aina-robot.github.io.

To estimate a reliable rotation around the z-axis, we use the
initial hand poses of both trajectories, F0

s and F0
w, and apply

the Kabsch algorithm [51] to compute the rigid transform
between them. From this transform, we extract the rotation
around the z-axis Rz , and apply it to the in-the-wild demon-
strations, yielding the final transformed trajectories:

Ôt
w = Rz · Ot

w +∆O (1)

F̂ t
w = Rz · F t

w +∆O (2)

T̂w = {Ôt
w, F̂ t

w} (3)

We apply this transformation to every in-the-wild demon-
stration, and both in-the-wild and in-scene demonstrations are
then used for policy learning, as described in the next section.

C. Learning and Deploying Smart Glass Policies on Robots

1) Policy Learning: To handle visual differences between
the robot environment and in the wild human demonstra-
tions, AINA utilizes transformer-based point-cloud policies and
builds on top of the state-of-the-art imitation learning algo-
rithm Point-Policy [7]. We provide the policy with a trajectory
of fingertips F t−To:t and object points Ot−To:t as input, and
train the model to predict the subsequent fingertip trajectory
F t:t+Tp , where To = 10 and Tp = 30 denote the observation
history and prediction horizon, respectively. In our architec-
ture, the observation history for each point is encoded into
a single vector using Vector Neuron Multilayer Perceptrons
(MLPs)[52]. These differ from regular MLPs in two key ways:
(1) points are represented with 3D perceptrons rather than 1D,
and (2) they employ SO(3)-equivariant activation layers. We
choose vector neuron MLPs due to their demonstrated ability
to better capture 3D geometric information[52]. The flattened
vectors are then passed into a transformer encoder as tokens.
Positional encoding is learned for only fingertip tokens and not
keypoint tokens. The representations output by this encoder are
subsequently fed into an MLP to predict the future fingertip
trajectory. Mathematically, this can be expressed as follows:

F̂ t:t+Tp = π
(
F t−To:t,Ot−To:t

)
. (4)

The entire system is trained end-to-end in a supervised
manner using the mean squared error between the predicted
and the ground-truth fingertips:

LMSE = E
[(
F t:t+Tp − F̂ t:t+Tp

)2]
. (5)

In order to improve generalization, we apply augmentations
during training. For each datapoint, we uniformly sample a
3D translation in the range [−30cm, 30cm], a scaling factor
in the range [0.8, 1.2], and a rotation between [−60◦, 60◦]
around the gravity axis. These augmentations are combined
into a single transformation, which is then applied consistently

Kinova Gen3

Realsense Cameras

Psyonic Ability

Fig. 5: Illustration of our robot setup.

to both the input to the model and the ground truth output
used to calculate LMSE. Finally, to prevent the model from
overfitting to the fingertips, we add Gaussian noise in the
range [−2cm, 2cm] to the input fingertips, but not to the
predicted actions. We train the model for 2000 epochs, which
typically takes about 2 hours per task. Our architecture is
visualized in Fig. 4.

2) Human Policy → Robot Deployment:
a) Robot Setup: Our robot setup consists of a single

Kinova Gen3 robot arm [53] with 7 degrees of freedom (DOF)
and a Psyonic Ability Hand with five fingers [3]. The Ability
Hand has six DOFs: one in each finger and two in the thumb. It
is designed as a prosthetic hand, making it compact and similar
in size to a human hand. To observe the robot’s environment,
we use two RealSense RGB-D cameras placed around the
operation space. Our robot configuration is illustrated in Fig. 5.

b) Inverse Kinematics: The kinematics of human arms
and hands differ from those of tabletop manipulators and
robot hands, making it non-trivial to replay human trajectories
on a robot. Although the Ability Hand’s small size reduces
this embodiment gap, the lack of wrist joints in tabletop
manipulators means that naively moving the arm and hand
separately often leads to infeasible configurations. To address
this, we implemented a custom full arm–hand inverse kine-
matics (IK) module I, similar to [2]. Given desired fingertips
F t+1 ∈ R5×3 and current Kinova and Ability joints J t ∈ R13,
the module outputs next joint angles J t+1 = I(F t+1,J t).
The policy predicts fingertips as actions, and the resulting
joint angles are applied to the robot during deployment. As in
training, we segment and track objects in 3D to obtain object
points and use forward kinematics to compute the fingertips.

c) Practical Implementation Details: Since the human
demonstrations do not include force information, for tasks
involving grasping, we set a grasping threshold: if the distance
between the predicted thumb and any other finger position is

https://aina-robot.github.io
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Fig. 6: Robot rollouts of AINA across nine tasks. Spatial generalization is shown in the leftmost column for each task. The meaning of each
symbol is explained below the figure. Dotted lines indicate the object’s orientation; when not shown, the orientation remains the same as in
the showcased rollout. For the Oven Opening task, we showcase AINA’s performance when there is background disturbance.

less than 5 cm, the fingers are moved closer together. This
helps mimic the force that humans apply during grasps.

IV. EXPERIMENTAL EVALUATION

We perform various real robot experiments and compare
AINA against multiple baselines to answer the following

questions:
1) How important are the different types of data used in

AINA?
2) How does AINA compare to image-based approaches for

learning from human data?
3) How well does AINA perform when the height of the
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Fig. 7: Visualization of in-the-wild human demonstrations collected for different tasks. These are collected with natural human motions and
with the right hand performing the respective tasks (no additional sensors on the humans or the environments, except Aria glasses).

operation space changes?
4) How well does AINA generalize spatially and across

different objects?

A. Task Descriptions

We evaluate AINA on nine tasks, each chosen to represent
a distinct skill or motion modality (wiping, pick-place, reori-
entation) and to reflect common daily manipulation activities.
Robot rollouts, success rates, and spatial generalization results
for each task are shown in Fig. 6. Human demonstrations used
to train different tasks are shown in Fig. 7. We describe each
task in detail in the Appendix A.

B. How important are the different types of data used in
AINA?

AINA is a new framework for learning robot policies by co-
training on in-the-wild and in-scene human video demonstra-
tions. In-scene demonstrations are used both to standardize the
input observations and to improve the policy. In this section,
we evaluate the importance of this recipe.

We compare AINA against the following baselines and
present the results in Table I:

1) In-Scene Only [2]: A policy trained using only a single
in-scene demonstration. Unlike HuDOR [2], we do not
apply any reinforcement learning for this baseline.

2) In-The-Wild Only [32]: A policy trained solely on
in-the-wild demonstrations. These demonstrations are
recorded with respect to the initial frame of the RGB
camera and then transformed into the robot space by
measuring the distance from the left camera to the center
of the operation space and shifting the points accordingly.
The closest approach to this is EgoZero [32], but our
baseline differs in two key ways: (a) we do not use ArUco
markers for data transfer, and (b) we perform closed-loop
tracking of all the object points.

3) In-Scene Transform and In-The-Wild [11]: A policy
that does not use in-scene data during training, but uses

the in-scene demonstration for transforming the in-the-
wild demonstrations. This baseline is inspired by Ze-
roMimic [11] that trains policies with in-the-wild human
videos and uses a single in-scene goal image to condition
the framework.

4) In-Scene Training and In-The-Wild: A policy that does
not use in-scene data for transformation but includes it
during training. The transformation is done as described
for the In-The-Wild Only baseline.

TABLE I: Comparison of success of AINA to policies trained with
different datasets. All methods are evaluated in similar deployment
scenarios, with minimum of 10 trials each.

Tasks Toaster Press Toy Picking

In-Scene Only [2] 30% 10%
In-The-Wild Only [32] 0% 0%

In-Scene Transform and In-The-Wild [11] 0% 10%
In-Scene Training and In-The-Wild 60% 20%
In-Scene and In-The-Wild (AINA) 86% 86%

From these results, we make the following observations:
In-the-wild demonstrations improve spatial generalization.

The In-Scene Only baseline succeeds when objects are placed
close to the demonstrated position, but it fails to generalize
beyond that location.

In-scene demonstrations improve training. Since deploy-
ment is performed using RGB-D cameras rather than Aria
glasses, the actions predicted by the In-The-Wild Only and In-
Scene Transform baselines appear highly misaligned, leading
to behaviors that look out of distribution.

In-scene demonstrations help transform in-the-wild demon-
strations. The in-the-wild data used here is collected on
different surfaces, with varying heights and different initial
head frames. This makes the transformation in the In-The-
Wild Only baseline prone to unstable rotations of the object
points, resulting in less accurate policies.
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C. How does AINA compare to image-based approaches for
learning from human data?

AINA uses object-centric point clouds as input to reduce
the visual disparity between human and robot observations.
Using point clouds and the alignment module in AINA also
improves robustness to viewpoint differences between in-
the-wild demonstrations and robot deployment scenarios. To
evaluate the impact of using point clouds, we compare AINA
to two image-based architectures on two of our tasks, with
the results shown in Table II. We implement the following
baselines:

1) Masked BAKU: We segment objects using the same
approach as in AINA and track masks across trajecto-
ries using Cutie [56]. We then apply BAKU [54], a
transformer-based imitation learning architecture, using
the masked RGB image of the objects along with the
history of fingertip positions. A visualization of this
architecture is shown in Fig. 8. In this baseline, we
provide fingertip history as input, but only a single RGB
frame.

2) Masked BAKU with History: This version uses the
same architecture as Masked BAKU but includes a his-
tory of RGB images instead of a single frame.

TABLE II: Comparison of success of AINA to policies trained
with RGB images as input. All methods are evaluated in similar
deployment scenarios, with 15 trials.

Tasks Oven Opening Drawer Opening

Masked BAKU 6/15 1/15
Masked BAKU with History 0/15 0/15

AINA 12/15 11/15

Both baselines are trained on the same dataset as AINA. We
observe that AINA outperforms these image-based baselines
on both tasks. Within the in-the-wild demonstrations, the
human head naturally moves, whereas the robot’s camera
remains fixed during deployment. This discrepancy causes the
Masked BAKU with History inputs to fall out of distribution
relative to the training data, causing the policies to perform
extremely poorly. Masked BAKU performs better, succeeding
in nearly half of the trials; however, we still observe that

17.5cm14cm7cm

Height 1 Height 2 Height 3

Fig. 9: Illustration of the height experiments. Each yellow plate is 3.5
cm tall. Height 1 consists of 2 plates, Height 2 of 4 plates, and Height
3 of 5 plates. Thus, Height 1 is closest to the original deployment
scenario, while Height 3 is the furthest.

viewpoint disparity between human demonstrations and robot
deployment negatively affects performance. These demonstrate
the importance of ingesting 3D inputs, and point tracks instead
of images, for effective human-to-robot transfer.

D. How does AINA perform when the height of the operation
space changes?

AINA does not assume prior knowledge about the height
of the manipulated object, the data collector, or the robot’s
operation space. To demonstrate its use in operation spaces
with different heights, we placed 3.5 cm tall plates on top
of the robot’s desk to create three height levels, as illustrated
in Fig. 9. For each height level, we collect an additional in-
scene human demonstration for alignment (requiring less than
a minute to collect), as described in Section III-B1 and use
the same human data originally collected in-the-wild. We show
the results in Table III.

TABLE III: Success rate of AINA deployed on plates with different
height levels.

Tasks Toy Picking Wiping

Height 1 5/10 5/10
Height 2 6/10 5/10
Height 3 2/10 8/10

We find that the resulting policies perform robustly across
tasks, reliably generalizing across heights. This demonstrates
the flexibility of AINA in transferring manipulation skills from
in-the-wild data to new scenarios with minimal human effort.
Occasional failures arise when an in-scene human demon-
stration trajectory diverges significantly from the distribution
of in-the-wild data. For example, in the Toy Picking task at
Height 3, the in-scene demonstration brought the toy unusually
close to the bowl. This atypical trajectory led the policy to
reproduce the behavior during deployment, causing the toy to
push the bowl.

E. How does AINA generalize to different objects?

We evaluate the generalization of AINA by testing policies
on novel objects across three tasks. Here, we do not train any
new policies; instead, we deploy existing ones zero-shot in en-
vironments with new objects while prompting GroundedSAM
with new task keywords. The success rates and corresponding
text prompts are shown in Fig. 10. We observe that for objects
with similar shapes, such as the new toaster or the white
eraser, AINA generalizes well. However, when the shape and
weight of the objects differ significantly—such as a popcorn
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Fig. 10: Generalization experiments on Toy Picking, Toaster Press
and Wiping tasks. Language prompts used to track the objects are
showcased next to each object.

package compared to the toy or a board eraser compared to
the sponge—AINA struggles to generalize.

V. DISCUSSION, LIMITATIONS, CONCLUSION

In this work, we presented AINA, a new framework that
leverages capabilities of Aria Gen 2 glasses to learn point-
based multi-fingered policies from explicitly in-the-wild hu-
man demonstrations.

While promising, we observe three limitations. First, our
framework cannot easily integrate force feedback, since hand
pose estimation alone cannot capture this information, which is
often crucial for accurate dexterous manipulation [57, 58, 59].
This could be addressed by integrating other wearables, such
as EMG sensors or force-estimating gloves. Second, the Aria
Gen 2 glasses exhibit a slight difference in shutter timing
between the RGB and SLAM cameras. Rapid head move-
ments during data collection can therefore cause misalign-
ment between the object’s pixels in the RGB image and the
corresponding depth in SLAM. To mitigate this, we currently
instruct data collectors to avoid rapid head movements, though
alternative solutions include using more robust 3D object
tracking algorithms [60] or fitting and tracking a mesh rep-
resentation of the object [61]. Finally, during deployment we
currently use Realsense cameras, which causes the keypoints
collected with Aria glasses to differ slightly from those ob-
served at deployment. The reason we are not yet streaming
Aria input is the difficulty of obtaining real-time depth es-
timates with FoundationStereo. However, this is an ongoing
effort and we believe that with sufficient optimizations, we
can receive near real-time depth.
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APPENDIX

A. Task Descriptions

In this section, we describe each task in detail.
a) Toaster Press: The robot must locate and push down

the lever of a bread toaster. The toaster is positioned within a
30, cm × 50, cm area. The text prompt used is toaster.

b) Toy Picking: The robot must locate and pick up a
soft pink toy, then drop it into a bowl. The toy is positioned
within a 30, cm × 30, cm area, while the bowl remains fixed.
The text prompts used are bowl and pink toy.

c) Oven Opening: The robot must locate a toaster oven
and open its door by pulling its lever. The oven is positioned
within a 50, cm×30, cm area. The text prompt used is toaster
oven.

d) Drawer Opening: The robot must locate a white
storage drawer and slide it open. The drawer is positioned
within a 50, cm × 30, cm area. The text prompt used is white
box.

e) Wiping: The robot must locate a sponge and wipe
the board. The sponge is positioned within a 30, cm × 30, cm
area. The demonstrations do not specify where to wipe; wiping
motions are collected arbitrarily. Success is therefore defined
by whether the robot achieves a stable grasp of the sponge
and wipes some portion of the board. The text prompt used is
sponge.

f) Planar Reorientation: The robot must locate a ba-
nana, reorient it in place, and pick it up. The banana is
positioned within a 30, cm × 30, cm area. The text prompt
used is banana.

g) Cup Pouring: The robot must locate a red cup, pick
it up, and pour its contents into a bowl. The cup is positioned
within a 30, cm × 30, cm area, while the bowl remains fixed.
The text prompts used are red cup and bowl.

h) Stowing: The robot must locate a bowl, pick it up,
place it inside a toaster oven, and close the oven door. This is
a long-horizon task involving multiple skills: picking up a rigid
bowl, placing it in a spatially constrained location, and closing
the oven door. The bowl is positioned within a 20, cm×20, cm
area, while the oven remains fixed. The text prompts used are
toaster oven and bowl.

i) Knob Rotating: The robot must locate the temperature
knob of a toaster oven and rotate it 90 degrees. The toaster
oven is positioned within a 20, cm × 20, cm area. The text
prompt used is toaster oven.
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