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Abstract

We address the challenge of learning good video repre-
sentations by explicitly modeling the relationship between
visual concepts in time space. We propose a novel Tem-
poral Preserving Recurrent Neural Network (TPRNN) that
extracts and encodes visual dynamics with frame-level fea-
tures as input. The proposed network architecture captures
temporal dynamics by keeping track of the ordinal rela-
tionship of co-occurring visual concepts, and constructs
video representations with their temporal order patterns.
The resultant video representations effectively encode tem-
poral information of dynamic patterns, which makes them
more discriminative to human actions performed with dif-
ferent sequences of action patterns. We evaluate the pro-
posed model on several real video datasets, and the results
show that it successfully outperforms the baseline models.
In particular, we observe significant improvement on action
classes that can only be distinguished by capturing the tem-
poral orders of action patterns.

1. Introduction
Video representation learning is a very active research

area due to its fundamental role in many computer vision
tasks. It attempts to close the huge performance gap be-
tween the state-of-the-art recognition systems and human
beings. Inspired by the tremendous success of the Convolu-
tional Neural Networks (CNN) in learning image represen-
tations [15, 21, 25, 11, 8], recent works focus on generaliza-
tion the CNN architectures to learn high quality video rep-
resentations [14, 26, 28, 20, 31]. Although these approaches
make a significant progress in learning better video features,
the performance on many tasks has a large gap to what
has been achieved on the image-related tasks such as im-
age classification [15, 21, 25, 8], human face recognition
[18, 16] and human pose estimation [2, 30].

One of the possible reasons making video representation

learning so challenging is video clips usually contain very
rich global and local temporal information which is essen-
tial for distinguishing different videos with similar frame
level information. For example, videos of opening/closing
a door can be easily classified by the temporal information
on when the door leaves/approaches the wall, while it is
hard to classify them solely based on the visual informa-
tion of individual frames. Most CNN-based video features
handle the challenge by leveraging the local temporal infor-
mation between consecutive frames [28, 14, 20, 5]. Some
other methods employ Long-Short-Term-Memory (LSTM)
[9] to capture the long-term dependencies between frames
[4, 23]. However, the LSTM model encodes its output as
a nonlinear function of frame-level image features, which
still limits its capability to model how the temporal orders
of action patterns would impact the recognition tasks.

This inspires us to encode global temporal information
into video representations. Specifically, we present the
Temporal Preserving Recurrent Neural Network (TPRNN)
by generalizing the idea behind the First-Take-All frame-
work [10], a novel representation that learns discrete-valued
representations of sequential data by encoding the tempo-
ral orders of latent patterns. The proposed TPRNN archi-
tecture is designated to extract rich patterns over an entire
video sequence and encode them as compact video features
in ordered temporal structures. Different from the LSTM
that is designed to memorize the long-term dependencies
between frames, the proposed TPRNN generates video fea-
tures directly from the ordinal relationships between action
patterns in the temporal domain. Compared to frame-level
features, the TPRNN features can be more discriminative
in recognizing videos captured in the same context (e.g.,
background, objects and actors) but comprising different se-
quences of ordered action patterns.

To evaluate the proposed TPRNN model, we conduct
extensive experiments on two action recognition datasets,
UCF-101 [22] and Charades [19]. To verify the effective-
ness of the model in encoding temporal orders of actions,
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we construct new action classes by reversing the original
videos and test if the model can distinguish the reverse
action from its original counterpart. Our experiment re-
sults show that the proposed TPRNN model outperforms
the LSTM model on both datasets. Moreover, the TPRNN
features also significantly improve the performance of the
frame-level CNN features and LSTM on recognizing action
classes that are only distinguishable by different temporal
orders of action patterns.

The rest of this paper is organized as follows. Section
2 reviews related literature on video representation learn-
ing. Then we introduce the proposed TPRNN architecture
in Section 3. We show our experiment results on video ac-
tion datasets in Section 4, and summarize the paper in Sec-
tion 5.

2. Related Works
Deep features acquired by CNN-based architectures

achieved great success in many computer vision applica-
tions such as image classification [15, 21, 25, 8], face recog-
nition [18, 16], pose estimation [2, 30], etc. Due to its su-
perior performance compared to conventional methods, re-
cent works tend to expand the application of CNN features
to a wider range of areas. In terms of video representation
learning, several recent works have investigated the ques-
tion of how to leverage temporal information in addition to
the frame level spatial information. These efforts can be
roughly divided into two different categories. One is to ex-
tend the convolution operation to the temporal axis with 3
dimensional filters learn spatiotemporal features. For ex-
ample, [12] tries to stack consecutive video frames and ex-
tend 2D CNN into time axis. While [14] studies several ap-
proaches for temporal sampling shows they cannot encode
the temporal information effectively as they only report a
marginal improvement over a spatial CNN. Moreover, C3D
method [28] introduces a architecture similar to [21] but al-
lowing all filters to operate over spatial and temporal do-
main. [24] introduces another way to learn spatiotemporal
features by factorizing 3D convolution into a 2D spatial and
a 1D temporal convolution.

Another way to encode temporal information is repre-
sented by the two stream approach originally proposed by
[20]. The method decomposes a video clip into spatial and
temporal components and feeds them into two separated
CNN architectures to learn spatial and temporal represen-
tations separately. Then the final prediction is based on the
late fusion of the softmax scores from both streams. Rather
than performing late fusion at softmax outputs, [5] stud-
ies several different fusion strategies including both spa-
tial fusion (sum, concatenation, bilinear, etc.) temporal fu-
sion (3D pooling). The fused features produced by the two
stream approach is shown very effective in action recogni-
tion and has been deployed into several action recognition

methods [1, 6].
Besides CNN-based features, some other methods em-

ploy LSTM [9] to encode the long-term dependencies be-
tween frames into the video features. A typical way to
do this is Long-Term Recurrent Convolutional Network
(LRCN) [4], which is the most closely related work to ours.
LRCN combines CNN structure and LSTM into a unified
framework and can be trained in an end-to-end fashion.
Similar works include [31] and [29]: [31] investigates ways
to pool temporal features across longer time span, as well
as sequential modeling with deeply stacked LSTM, while
[29] fuses different types of features including two stream,
stacked LSTM, spatial pooling and temporal pooling to
make final prediction. Moreover, [23] treats LSTM layer as
an autoencoder and learns video representations in an unsu-
pervised fashion. Although LSTM can discover long-range
temporal relationships between frames, the resultant video
features are still from spatial feature space. On the con-
trary, First-Take-All hashing [10] encodes temporal order
information directly from time space and can achieve good
performance on time sensitive datasets.

3. Temporal Preserving Recurrent Network
In this section, we introduce Temporal Preserving Re-

current Network, a novel RNN-based model which is de-
signed to encode temporal structure information between
video frames. First, we explain the design principles for
the proposed network along with the connection between
the aforementioned First-Take-All Hashing [10], then we
present the architecture of the proposed network including
the definition of each layer and its functionality. Finally,
we compare the proposed network with other recurrent net-
works, which share similar structures.

3.1. Intuition

We design the proposed Temporal Preserving Recurrent
Network based on the inspiration from the First-Take-All
(FTA) hashing [10], which employs the temporal order in-
formation to compactly represent videos. In FTA, a multi-
dimensional process is projected to a latent subspace at
each time step, generating a set of 1D latent temporal sig-
nals. The occurrences of the maximal values are compared
among all the latent signals, and the one with the first max-
imum occurrence is used to index the hash code. However,
there are several drawbacks with the FTA formulation. (1)
Only the index of the first-appearing patterns is used to rep-
resent the sequence. Others are ignored which may also
contain useful information. (2) In the FTA comparison, The
only learnable parameter is the linear projection. The num-
ber of projections and the dimension of each projection are
also determined heuristically. Therefore, the learning capa-
bility and scalability of FTA is limited. (3) Since FTA is
an hashing algorithm, the binary nature of the FTA codes



Figure 1: Structure of temporal preserving network, where
the circle represents the max-pooling layer and the rounded
corner rectangle represents the temporal preserving layer.

prevents them from representing input sequences more ac-
curate than those floating-point features.

To address the weaknesses of FTA hashing, we reformu-
late the FTA comparison in a recursive fashion, so that it can
be implemented with a computational model such as recur-
rent neural network. Denote the original multi-dimensional
process as {xt}, and the linear projection as Z, the running
maximum mt of projected latent signals can be obtained by

mt = max(Zxt,mt−1). (1)

All scalar functions such as max(·) are applied in an
element-wise way unless otherwise stated. The time steps
st when the maximal values mt first occurred so far can be
recorded as

st =

{
t̃, if Zxt >mt−1,

st−1, otherwise.
(2)

where t̃ stands for the normalized version of time index in
[0, 1]. After recursive updating with equations 1 and 2, at
the final step T , FTA calculates a binary hash code based on
the index argmini sT (i). Note that the conditional expres-
sion of st can be controlled by a logic gate σ(Zxt−mt−1),
where σ(·) is a sigmoid function approximating the hard
boolean operation.

3.2. Model Architecture

Based on the components of FTA, we propose a Tem-
poral Preserving Recurrent Neural Network (TPRNN) with
stronger temporal modeling capability. TPRNN is a RNN-
based network with evolving memory cells connected in the
same way at each time step. An illustration of the network
structure at one time slice is shown in Figure 1. An input

xt (video frame feature) is fed into the network together
with the current time step t, and the hidden states mt, st
are updated with the control of gate gt. There are several
components in the network with distinct functionality as
described in below.

Max-pooling Layer The bottom circle in Figure 1 is
a max-pooling layer over adjacent time steps. Same as
equation 1 for FTA, this layer evaluates the latent patterns
of input feature xt with linear projection Z, and stores the
current maximal projected values in state mt by comparing
with the previous state mt−1.

Temporal-preserving Layer This layer in the rounded
corner rectangle of Figure 1 plays a key role in construct-
ing the temporal preserving representation. It keeps track of
important time moments t in state st with a control gate gt:

st = (1− gt) · st−1 + gt · t̃, (3)

The gate gt is a sigmoid function which is activated when
the most salient moment of a latent event is detected:

gt = σ(Wxt −Umt−1), (4)

where the current input feature xt is compared with the pre-
vious maximal response mt−1 in latent spaces spanned by
matrices W and U.

The temporal-preserving layer introduces a few exten-
sions based on the FTA comparison in equation 2. First,
rather than following a hard activation condition, we em-
ploy a soft activation function to monitor latent patterns,
which is differential and more sensitive to subtle temporal
changes. Similar to the gates in LSTM, gt measures the
likelihood of a latent pattern occurrence. It controls how
much to forget about the previous state st−1 and how much
to remember for the current time step t. Such soft updat-
ing scheme enables multiple time steps to contribute as the
occurrences of salient events. As a result, the temporal-
preserving layer is capable of leveraging more high-order
temporal information than solely considering the maximal
response moments.

More importantly, two additional parameters W and U
are introduced in equation 4 for better modeling of complex
dynamic visual events. The projection U is applied on
the max-pooling state mt−1 to extract more semantic
information from input feature. The projection W together
with the original parameter Z provide two different latent
spaces of xt for activating gate and detecting maximal
response, sharing similar motivation as the key/value
addressing mechanism in Neural Turing Machine [7]. If we
set U = I and W = Z, the temporal-preserving layer will
reduce to FTA comparison.



Output Layer At the last time step T , the hidden state sT
accumulates the occurrence information of latent patterns in
all previous steps. Thus, each dimension of sT represents
the expected time step when a latent pattern occurs. To en-
code the temporal order relationship among different visual
patterns, we apply a weighted softmax layer to sT to get the
output representation o of video sequence:

o = softmax(YsT ) =
exp(YsT )∑
i exp(Y(i)sT )

, (5)

where Y is output weight matrix and Y(i) is the i-th row
of Y. Each row of Y selects two or more latent patterns
and compares their relative temporal order through a
learned linear combination. The strength of all the ordinary
relationships is normalized to a probability vector by a
softmax function. In contrast to FTA, equation 5 gives us
more flexibility to encode temporal information. The total
number of ordinal relationships to encode is controlled by
the number of rows in Y, and the number of latent patterns
involved in each comparison is controlled by the number of
non-zero entries in the rows of Y. An `1 regularization can
be used to control the sparsity of Y.

For a further understanding of the proposed model, we
give an intuitive example of how each component works in
TPRNN. In the max-pooling layer, the projected value of xt

indicates the likelihood of visual concepts, such as arm and
forearm, appearing in current video frame. The most promi-
nent responses of visual concepts are kept in the state mt.
The temporal-preserving layer projects the visual concepts
into some higher-order subspace with W and U, captur-
ing information such as the pose of elbow (angle between
arm and forearm). When the elbow pose changes signif-
icantly (with arms stretching or folding), the gate gt will
be activated and the current event moment will be memo-
rized in st. By aggregating all the time steps when elbow
pose changes and comparing with other correlated poses
such as shoulder movement, the output representation o can
be useful to characterize videos containing boxing activity
which requires joint elbow and shoulder motion. The pro-
posed model mainly relies on dynamic order information to
represent and distinguish videos, which is why we call it
temporal-preserving network.

3.3. Comparison with other RNNs

We compare the proposed network with the other vari-
ants in the RNN, which include the conventional LSTM
[9] and Gated Recurrent Unit (GRU) [3]. Similar to these
models, the proposed TPRNN also employs the activation
gate to forget and store useful information in the hidden
states. However, compared to both LSTM and GRU, there
are several differences in the proposed TPRNN model. A
major difference in the proposed TPRNN model is the en-

# of gates # of parameters
LSTM 4 4 ∗ (n ∗ d+ n2)
GRU 2 3 ∗ (n ∗ d+ n2)

TPRNN 1 2 ∗ n ∗ d+ n2

Table 1: Structural differences between LSTM, GRU and
TPRNN. Here n represents hidden states dimension and d
represents input dimension.

coding space. Rather than learning temporal dependencies
from the frame-level (spatial) feature space, TPRNN in-
tends to capture temporal order structures directly from the
time space. This allows video sequences to be represented
from a new perspective that totally different from using the
spatial features. If two video sequences contain the same
visual concepts but only with different orders (for example,
open/close a door), the temporal order information is very
useful to distinguish their differences. In such cases, the
feature generated by TPRNN can be a great complement
for spatial features.

Another straightforward difference is the proposed
TPRNN has a simpler structure than LSTM and GRU. Ta-
ble 1 summarizes the distinction between three structures
in terms of the number of activation gates and the num-
ber of parameters. We can see that LSTM has the most
complicated structure with the most activation gates and pa-
rameters, while TPRNN only contains less than half of its
parameters with only one gate. This makes TPRNN more
invulnerable to overfitting.

4. Experiments
We evaluate the proposed TPRNN representations by

performing video classification tasks on two public avail-
able datasets: UCF-101 [22] and Charades [19]. The evalu-
ation aims to validate the properties of TPRNN from three
aspects. First, we compare TPRNN with conventional
LSTM structure to demonstrate the advantage of TPRNN
encoding temporal order structures. Then, we analyze the
performance of TPRNN on time-sensitive classes. At last,
we prove that the TPRNN feature can be a good comple-
ment of the spatial features by fusing TPRNN features with
frame level features.

4.1. Datasets

We employ two video benchmarks to evaluate the pro-
posed TPRNN model: UCF-101 [22] and Charades [19].
UCF-101 dataset includes 13320 videos from 101 action
categories with average over 150 frames per video. Each
video clip in dataset is segmented to exactly contain one of
101 categories. Charades dataset contains 9848 videos of
daily indoors activities with temporal annotations for 157



action classes. Unlike UCF-101, each video clip in Cha-
rades dataset may contain multiple action classes in differ-
ent temporal locations. For UCF-101, We use split-1 with
9537 and 3783 videos as training and testing samples, to
conduct our experiments. And for Charades, we exclude
videos without any action labels so the final version of the
dataset in our experiments contains 7811 training and 1814
testing samples, respectively.

4.2. Implementation and Training

We implement both the conventional LSTM and the pro-
posed TPRNN with Theano [27] python math library. Note
that the time scale is normalized to 1 for all video clips such
that the occurrences of all visual concepts are in [0, 1]. The
deep features used in the experiments come from several
different Convolutional Neural Network (CNN) models in-
cluding AlexNet [15], VGG [21] and LRCN-single-frame
[4]. It is worth mentioning that the VGG models we use
to compute RGB (spatial) and flow (temporal) features are
provided by [5] which is also fine-tuned on UCF-101, while
the adopted AlexNet is pre-trained on ImageNet [17]. All
these features are computed with Caffe [13] framework.

We compare the TPRNN features with another two base-
lines. One is using frame features to represent video clips by
averaging across all frames. Another is feeding frame fea-
tures to LSTM to learn long-term frame dependencies, then
average the outputs across all time steps to get video rep-
resentations. We feed these features into a linear classifier
and produce the softmax score for each class. The weights
of linear classifier can be learned along with TPRNN by
minimizing the cross-entropy loss.

Although TPRNN can be trained along with the CNN
in an end-to-end fashion, we fix the CNN weights to com-
pute spatial features and only update weights of LSTM and
TPRNN to focus our experiments on the recurrent mod-
ule. This makes sure we evaluate the impact of encod-
ing temporal order information without changing the spa-
tial inputs. We follow the different frame sampling proto-
cols specified by [5] and [19] on UCF-101 and Charades
respectively. During the training phase, the first frame of
each video is randomly cropped with an input size of the
CNN networks then the same spatial crop is applied to all
frames. Specifically, for Charades dataset, we follow the
setup in [19] that only train the models with untrimmed in-
tervals which don’t include action localization information
for multi-labeled video clips. Unless otherwise specified,
we employ the central crops to do the testing and the num-
ber of hidden states and batch size are always set to 200 and
16 videos per batch, respectively.

At last, we adopt prediction accuracy as evaluation met-
ric for the single label cases of UCF-101 while we adopt
mean average precision to handle multi-label cases of Cha-
rades.

UCF-101 LSTM TPRNN
VGG-16-fc6 0.7766 0.7861
VGG-16-fc7 0.7769 0.7938

VGG-16-flow-fc6 0.8039 0.8118
VGG-16-flow-fc7 0.8007 0.8107

Table 2: Recognition Accuracy on UCF-101 dataset

Charades LSTM TPRNN
AlexNet-fc6 0.1027 0.1061
AlexNet-fc7 0.0996 0.1119

Table 3: Mean Average Precision on Charades dataset

4.3. LSTM vs. TPRNN

We compare TPRNN with the conventional LSTM by
generating video representations with various frame level
spatial features. Table 2 and 3 demonstrate the comparison
results on both datasets. From tables we can see the pro-
posed TPRNN outperforms the conventional LSTM with
most input spatial features. On UCF-101, we also test both
methods additionally with flow image inputs computed by
[5]. Table 2 shows that TPRNN achieves around 1% better
performance than LSTM with all input features from differ-
ent fully connected layers and RGB/flow images. We can
also observe that the improvement from LSTM to TPRNN
is more obvious when using RGB frames. This is reason-
able since RGB features only contain static spatial informa-
tion, while flow features already have some local motion
information. So TPRNN seems producing less benefit to
the flow inputs. During the training, we also find LSTM
more sensitive to the overfitting since there are much more
weights in LSTM as discussed in section 3.3.

Similar results can be observed on Charades dataset,
where TPRNN can also outperform LSTM with both fc6
and fc7 features from AlexNet. However, compared to
UCF-101, the gap between LSTM and TPRNN is much
smaller with features from fc6 than fc7. Note that during
the training phases on the Charades dataset, we perform
untrimmed training which doesn’t utilize any action local-
ization information provided by training set. Thus learning
long-term dependencies between input frames may be not
as effective as encoding visual concept occurrences along
the time domain, since visual concepts occurrences can be
served as some boundary points for trimmed interval pre-
senting interested actions.

4.4. Analysis on Subsets

Although we demonstrate the TPRNN can achieve bet-
ter performance on both datasets, it is beneficial to analyze



Class LSTM TPRNN Performance Gain
Cliffdiving 0.6410 0.9359 +0.2949
HighJump 0.5676 0.8378 +0.2702

CleanAndJerk 0.5000 0.8182 +0.3182
BalanceBeam 0.5697 0.7742 +0.2045

PoleVault 0.7125 0.7125 +0.0000
CricketBowling 0.5417 0.6667 +0.1240

LongJump 0.6154 0.6538 +0.0384
BlowingCandles 0.5000 0.5152 +0.0152

TennisSwing 0.5000 0.5102 +0.0102
Rowing 0.5000 0.5000 +0.0000
Overall 0.5697 0.6877 +0.1180

Table 4: Accuracy of predicting reverse/unreverse on 10
classes of UCF-101

(a) CliffDiving

(b) TennisSwing

(c) Rowing

Figure 2: Examples of classes with different foreground and
background variations

which video classes can benefit more from temporal fea-
tures of TPRNN. Based on [5] which achieves over 80%
recognition accuracy with only spatial VGG features on
UCF-101, we can see most of action types can be discrim-
inated well with only spatial context (e.g. background). In
order to evaluate the discriminability based on temporal dif-
ferences without too much interference of spatial context
information, we first reverse the frame orders for all video
clips to add another 101 classes to the original dataset (total
202 classes after reverse). So the reversed classes can only
be distinguished by their temporal order differences. Then
we train both LSTM and TPRNN plus using only spatial
features as baseline on the dataset with fine-tuned VGG-16
model used in 4.3, and test with fc7 layer features for each
of the original classes by predicting whether a sample from
that class is reversed or not.

We test and report the original/reversed prediction results

Group 1– Opening/Closing sth.
Spatial LSTM TPRNN

Door 0.2671 0.2662 0.3261
Box 0.0410 0.0446 0.0357

Laptop 0.0186 0.0252 0.0440
Closet/Cabinet 0.1612 0.1704 0.1660

Refrigerator 0.1673 0.0984 0.1712
MAP 0.1311 0.1209 0.1486

Group 2– Taking/Putting sth. somewhere
Spatial LSTM TPRNN

Bag 0.0441 0.0457 0.0530
Shoes 0.0379 0.0421 0.0525

Sandwich 0.0305 0.0304 0.0367
Blanket 0.0857 0.0806 0.0972
Broom 0.0416 0.0381 0.0482
MAP 0.0480 0.0474 0.0575

Overall MAP 0.0896 0.0842 0.1031

Table 5: Average Precision (AP) and Mean Average Preci-
sion (MAP) of each class pairs and action type group. sth.
indicates different visual objects

for 10 representative UCF-101 classes whose video clips
are with different level of foreground, background changes
and camera variations. For example, video clips in Cliff-
Diving class begin with a background of cliff but end with
a background of water, while video clips of BlowingCan-
dles usually have a static background with relatively small
region of interest (candle fire, etc.). As it is a binary classi-
fication problem, using only spatial features output =0.5 ac-
curacy for all 10 classes, as the spatial features are exactly
symmetric for test samples. This indicates it is impossible
to distinguish the original/reversed clips without any long-
term or temporal information. Other results are summarized
in Table 4, which includes prediction accuracy and perfor-
mance gain of TPRNN over LSTM for individual and the
overall classes. We can see that LSTM performs obviously
better than random guess on around half of classes but still
produces poor results for another half. In contrast, TPRNN
outperforms LSTM with a significant margin on most of
classes. However, on some classes it performs close to a
random guess. We notice that in the classes where TPRNN
and LSTM are significantly better than random, video clips
usually contain distinct background or camera variations
throughout the frames. For Instance, as shown in Figure
2a, video clips of CliffDiving class always start with a per-
son standing height. After the action begins, the camera will
track the person dropping from height until he/she gets into
water. So there will be notable background order difference



UCF-101 Spatial TPRNN Late Fusion
LRCN[4]-single-fc7 0.6952 0.7112 0.7187
VGG-16-RGB-fc7 0.7893 0.7938 0.8057
VGG-16-flow-fc7 0.8096 0.8107 0.8197

Charades Spatial TPRNN Late Fusion
AlexNet-fc7 0.1034 0.1119 0.1136

Table 6: Late fusion results on UCF101 and Charades

between original and reversed classes, making them much
easier to be classified by TPRNN. In such cases, the action
region is very small and is not a crucial factor to classify
the video. Besides, for those classes which TPRNN per-
forms similarly poor as TennisSwing (Figure 2b), we can
see that such actions often take place at some static loca-
tions such as tennis ground, etc. Thus background varia-
tions contribute very little in temporal order differences and
TPRNN will rely on the variations of much smaller action
regions (poses), making it less beneficial for these classes.
What’s more, Rowing class represents classes whose video
clips are temporally symmetric. As shown in Figure 2c, the
background is almost static and the action region varies pe-
riodically. In such cases, encoding the temporal differences
may not characterize video clips well and let the TPRNN
features perform like random guess. Similar behavior also
can be observed on the remaining classes.

Unlike UCF-101, Charades dataset contains many class
pairs that naturally with forward and backward orders, e.g.
closing/opening a door. Moreover, the classes in such
pairs can be further aggregated into some action types like
putting something somewhere and take something from
somewhere, etc. These action types share similar temporal
order patterns only with different visual concepts. We train
all three methods (spatial classifier, LSTM, TPRNN) on en-
tire dataset and then calculate the Average Precision (AP)
for each class. We report testing results on two different pair
groups. Each group contains 5 class pairs in forms of the
same action types but with different visual objects. For ex-
ample, action type of group 1 is opening/closing something
while the one of group 2 is putting/taking something some-
where. Table 5 demonstrates the AP for each pair as well as
their Mean Average Precision (MAP) for each group, where
the AP of each pair is the average of two classes. As we
expected, TPRNN works better in most of class pairs and
clearly boost the overall performance.

4.5. Fuse with Spatial Features

The TPRNN representation is designed to capture more
temporal information and therefore is expected to be a good
complement for spatial feature. To verify this argument, we
combine it with spatial features and test the performance

boost on the same recognition tasks. We compare the spa-
tial, TPRNN features and their late fusion results in Table
6 with different frame feature inputs. Note that for spa-
tial results, we average all frame features of each video clip
to generate a fixed-size video feature and then perform the
classification, while for late fusion, we follow the fusion
setting of [20] by averaging the prediction score of Spa-
tial features and TPRNN features to get the final prediction
score. For each CNN architecture, we experiment with fea-
tures from both fc6 and fc7 layer but only report fc7 results
since fc6 results are quite similar. We can see that on UCF-
101, late fusion with spatial features and TPRNN features
achieves different level of boosting. In cases that TPRNN
achieves same level performance as spatial features (VGG-
16-RGB and flow), late fusion improves about 1% recogni-
tion accuracy than single feature, while when TPRNN per-
forms better than spatial ones such as using LRCN-single
frame inputs, fusion results are less boosted because of the
discrimative gap between two types of features. Similar re-
sults can be observed on Charades dataset. Such results co-
incide with the expectation that the fusion with two features
can achieve better performance.

5. Conclusion

This paper presents a novel Temporal Preserving Recur-
rent Network (TPRNN) that aims to learn video representa-
tion directly from the temporal domain. The proposed net-
work architecture models the temporal order relationships
between visual concepts by leveraging their occurrences
from spatial feature inputs. The resultant video features
provide a new way to characterize video clips with tem-
poral information only. Compared to other RNN structure
such as LSTM [9] and GRU [3], TPRNN has simpler inner
structure with less parameters which makes it more invuner-
able to overfitting. The structure design also let the TPRNN
overcome the shortcomings that First-Take-All [10] hashing
suffers and be able to leverage much more temporal order
information in the video representation. We evaluate the
proposed TPRNN model on UCF-101 and Charades dataset
for action recognition with extensive experiments. The re-
sults indicate the proposed TPRNN model outperforms the
conventional LSTM and can further improve by combining
the spatial features. In particular, significant performance
boost is achieved for action classes only are distinguishable
by temporal orders.
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