Carnegie Mellon University

Reflectance Capture using Univariate Sampling of BRDFs Zhuo Hui¹, Kalyan Sunkavalli², Joon-Young Lee², Sunil Hadap²

Background	
 Direct BRDF measurement Pros: provide faithful rendition. Cons: specialized acquisition setups, large amount of images 	• A • L E
Image-based method	6
 Pros: High-quality estimation with commodity hardware. 	•
 Cons: restricted setup, i.e. distant lighting, calibrated camera. 	
 Optimal BRDF sampling Pros: small set of input images. 	

Cons: calibrated camera and light sources.

Proposed setup

• A mobile setup to estimate the material BRDFs

Challenge: mobile devices have co-located camera and light leading to a sparse sampling of the BRDF

 Can we exploit 1-D "univariate" sampling of a 3-D isotropic BRDF to recover material reflectance?

Complete BRDFs reconstructed by applying coefficients to BRDF dictionary

Jian Wang¹, Aswin C. Sankaranarayanan¹

¹Carnegie Mellon University, ²Adobe Research

Univariate sampling of isotropic BRDFs

measurements of one material from MERL database

Lighting/view directions $(\mathbf{l_p}, \mathbf{v_p})$ calibrated from images

First, identify exemplars materials on sample by enforcing sparsity in BRDF coefficients

Then, iteratively recover SVBRDF and normals by minimizing objective function:

- Initialize with flat surface, update coefficients
- Fix coefficients, update surface normals

Input image

Results on iPhone 6s

Material editing results

Material trait analysis

plastic/acrylic

diffuse paint/fabric metallic paint/metal

