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Abstract—Commercial light field cameras provide spatial and
angular information, but their limited resolution becomes an
important problem in practical use. In this paper, we present
a novel method for light field image super-resolution (SR) to si-
multaneously up-sample both the spatial and angular resolutions
of a light field image via a deep convolutional neural network. We
first augment the spatial resolution of each sub-aperture image
by a spatial SR network, then novel views between super-resolved
sub-aperture images are generated by three different angular SR
networks according to the novel view locations. We improve both
the efficiency of training and the quality of angular SR results
by using weight sharing. In addition, we provide a new light
field image dataset for training and validating the network. We
train our whole network end-to-end, and show state-of-the-art
performances on quantitative and qualitative evaluations.

Index Terms—Convolutional neural network, super-resolution,
light field image.

I. INTRODUCTION

L IGHT FIELD (LF) imaging [2] has recently come into
the spotlight as the next generation imaging system. LF

images contain spatial and angular information of the light ray
distribution in space. Thus it can capture a multi-view scene in
a single photographic exposure. Many studies have shown the
LF system’s potential in improving the performance of many
applications, such as alpha matting [3], saliency detection [4]
and single LF image depth estimation [5], [6], [7], [8].

In order to capture LF images using hand-held devices, a
micro-lens array is placed in front of a camera sensor [9], [10].
The micro-lens array encodes angular information of the light
rays, but results in a trade-off between spatial and angular
resolutions in a restricted sensor resolution. This limitation
makes it difficult to exploit the advantages of the LF cameras.
Therefore, enhancing LF image resolutions is crucial to take
full advantage of LF imaging.

Super-resolution (SR) aims at recovering a high resolu-
tion image from a given low resolution image. Recent SR
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approaches are mostly based on convolutional neural net-
work [11], [12]. One major benefit is their generalization
ability given sufficient training data to fit a model and to cover
a wide range of distributions of expected test images. But,
these single image SR algorithms cannot be directly applied to
a LF image SR problem because the target of LF SR includes
the number of sub-aperture images as well as the number of
spatial pixels.

To simultaneously achieve spatial and angular SR, there
are some previous studies [13], [14], [15] using Epipolar
plane images (EPI) which are 2D slices of constant angular
and spatial directions. As the EPI consists only of lines
with various slopes, the intrinsic dimension is much lower
than its ambient dimension, making image processing and
optimization tractable. However, the low quality LF images
captured by commercial LF cameras degrade the performance
of these approaches. As already discussed in [8], LF images
from commercial LF cameras suffer from lens aberration,
micro-lens distortion and vignetting, having negative impact
on EPIs.

To overcome this issue on LF image SR, we propose a
data-driven method using supervised learning. In this letter,
we introduce a cascade CNN framework consisting of a spatial
SR network and an angular SR network. In addition, as the
existing LF image datasets are too small to train a CNN,
we build a new LF image database with a variety of scenes,
materials and textures. We train our network end-to-end using
our database and demonstrate the state-of-the-art performances
through both quantitative and qualitative evaluations.

II. LIGHT FIELD IMAGE SUPER-RESOLUTION

A. Overview

We propose a new super-resolution method for light field
images, which jointly increases the resolution in both the
spatial and angular domains. Fig. 1 illustrates the architecture
of the proposed model composed of a spatial SR network and
an angular SR network, named light field convolution neural
network (LFCNN). LFCNN first performs a spatial SR that
increases the spatial resolution of the sub-aperture image, and
then performs an angular SR that creates a new view between
the sub-aperture images.

Let us suppose we have four sub-aperture images to take a
look at this process. First, we increase the spatial resolution of
these sub-aperture images by the bicubic interpolation with a
desired up-scaling factor. Then, these sub-aperture images are
put into a spatial SR network to enhance the high-frequency
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Fig. 1. Architecture of our light field convolution neural network (LFCNN). This is composed of a spatial SR network and the angular SR network. The
spatial SR network performs spatial SR for each sub-aperter image. The angular SR network then takes three types of image pair and creates novel views for
each type. We apply zero padding to make the same size of input and output images. The convolution filter is described as f×f×c, where f is filter size and
c is the number of filters.

components. This spatial SR for the multiple sub-aperture
images is performed independently of each other. The spatial
SR network is based on the SR network proposed by Dong et
al. [11]. Through these processes, we obtain 4 super-resolved
sub-aperture images in the spatial domain.

Now, we perform the angular SR with the four sub-aperture
images. These four views are inputs to the angular SR network,
and the network creates novel views between them. The novel
views can be created by three types of input combinations. For
example, we can create a novel view between the two views
located horizontally, and another novel view between the two
views located vertically. Also, we can create a novel central
view from all the four views. To this end, we design an angular
SR network which takes these three types of input as shown
in Fig. 1. Given the four sub-aperture images, the network
creates five novel views including two novel views from the
two vertical input pairs, two other novel views from the two
horizontal input pairs and a central view from the four inputs.
In other words, the network increases the angular resolution
from 2×2 to 3×3 in this example.

B. Spatial SR network

The spatial SR network consists of three convolution layers
as illustrated in Fig. 1. The first convolution layer is composed
of 64 filters of 9×9 size, and the second one has 32 filters
of 1×1 size. The last convolution layer is composed of a
single filter of size 5×5. We do not use any pooling layer but
apply zero padding in each to preserve the size of intermediate
feature maps while minimizing the loss of information. All
convolution layers are followed by ReLU [16] except the last
convolution layer. To train this network, given N training
images, we minimize the mean square loss between the
estimation and the ground truth defined as

Lspatial =
1

N

N∑
i=1

∥∥∥X̂i
spatial −Xi

spatial

∥∥∥2
2
. (1)

where X̂ is an estimation while X is the ground truth.

In our previous work [1], we had three separated spatial
SR networks which correspond to each of the three types of
inputs for the angular SR network. For example, a spatial SR
network only takes a vertical input pair, while another spatial
SR network only takes a horizontal input pair. In this paper,
however, we define a single spatial SR network, which takes
each sub-aperture image independently. Since a single network
is learned with all sub-aperture images, it is more efficient than
the previous network in terms of representational capability as
well as computation.

C. Angular SR network

The angular SR aims at augmenting the angular resolution
from S × S views to (2S − 1) × (2S − 1) views. The most
simplest way to do so is to use the typical interpolation
methods such as bilinear or bicubic. However, estimating
novel views with these methods do not take disparities into
consideration. In contrast, the goal of our angular SR network
is to estimate novel views by learning the disparity between the
images of an input. Even if we do not supervise the network
to directly produce disparities, supervising the network to
generate a middle view from the two input views makes the
network implicitly estimate such information itself.

The angular SR network architecture is illustrated in Fig. 1.
Since this network should take three types of input, the
architecture begins with three parallel convolution layers cor-
responding to each input type; V-Conv1 for vertical image pair,
H-Conv1 for horizontal image pair and C-Conv for the four
images. Each of these layers is composed of 64 filters of 9×9
size followed by ReLU. A feature map from one of the three
parallel layers is then given to the second convolution layer
composed of 32 filters of size 5×5, which is followed by the
final convolution layer containing a single filter of size 5×5.
Note the second and third convolution layers, marked Conv2
and Conv3 in Fig. 1, are shared for the three types of inputs.
Similar to the spatial SR network, each convolution layer has
ReLU except for the last convolution layer. We do not use
any pooling layer but apply zero padding in each input of the
convolution layers. To train this network, similar to the spatial



SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS 3

TABLE I
QUANTITATIVE EVALUATION ON THE SYNTHETIC HCI DATASET. OUR APPROACH SIGNIFICANTLY OUTPERFORMS THE STATE-OF-THE-ART METHODS.

WANNER AND GOLDLUECKE [13] AND MITRA AND VEERARAGHAVAN [14] RESULTS ARE OBTAINED BY THE SOURCE CODE FROM THE AUTHORS.
PSNR(dB) SSIM

Methods Buddha Mona Buddha Mona
Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Bilinear 33.57 33.66 33.78 34.14 34.25 34.32 0.9036 0.9151 0.9242 0.9242 0.9291 0.9320
Bicubic 34.22 34.63 35.14 34.10 34.20 34.25 0.9251 0.9334 0.9466 0.9484 0.9496 0.9512
Mitra and Veeraraghavan [14] 29.29 30.26 31.33 29.59 30.28 30.94 0.7795 0.7994 0.8190 0.7993 0.8171 0.8354
Wanner and Goldluecke [13] 24.43 29.69 36.97 25.40 30.76 37.60 0.7662 0.8691 0.9670 0.8542 0.9324 0.9862
Yoon et al. [1] (AngularSR+SpatialSR+FT) 36.78 36.86 36.94 37.31 37.40 37.48 0.9571 0.9580 0.9589 0.9667 0.9669 0.9671
Yoon et al. [1] (SpatialSR+AngularSR+FT) 36.71 36.84 36.92 37.46 37.56 37.64 0.9549 0.9558 0.9565 0.9637 0.9640 0.9644
Proposed (SpatialSR+AngularSR+FT) 36.25 36.95 37.35 37.03 37.99 38.53 0.9579 0.9623 0.9657 0.9833 0.9863 0.9878

(a) Proposed (b) Yoon et al. [1] (c) Ground truth

Fig. 2. Qualitative comparison of generated novel views. Compared with our
previous model [1] showing ringing artifacts in high-frequency regions, the
result of the proposed method has much less artifacts.

SR network, we minimize the mean square loss between the
estimation and the ground truth defined as

Langular =
1

M

M∑
i=1

∥∥∥X̂i
angular −Xi

angular

∥∥∥2
2
. (2)

where M is the number of training input pairs in which
vertical, horizontal and central pairs are evenly included.

In our previous work [1], we had three separated angular
SR networks which correspond to each of the three types of
input. However, in this paper, we only parallelize the first-level
convolution layers for the three types of input and make them
share the rest of the convolutions. This architecture enforces
the first layer to extract invariant representations from each
of the different inputs while the rest of the layers performs
the angular super-resolution. Thus, it regularizes the angular
SR network to generate consistent SR results from three
different inputs. The proposed network has half the number
of parameters compared to our previous model [1]. Given
a limited training set, less number of parameters make our
training procedure tractable. As shown in Fig. 2, while results
from [1] show ringing artifacts at edges, our network infers
accurate super-resolved images.

D. Training

For the spatial SR network, we synthetically generate blurry
images by down-sampling and up-sampling original images
via bicubic interpolation, so the original images are regarded
as ground truths. For the angular SR network, we randomly
choose odd or even numbered sub-aperture image pairs as

inputs, then a view between a pair is regarded as the ground
truth. In this way we compose a large input pair set in which
the three types of input are evenly included. Due to the limited
GPU memory, we randomly crop 32×32 patches and make
mini-batches of size 16. Following [11], we transform the
color space from RGB to YCbCr, and use only the luminance
channel for training. In the inference stage, we apply our
method to each of YCbCr channels and convert them to the
RGB space again.

We independently train each network by minimizing the
mean square loss defined as Eq. (1) and Eq. (2). The filters
of the two networks are initialized by a Gaussian distribution
with zero mean and standard deviation of 10−3. We employ
the Adam optimizer [17] with β1 = 0.9, β2 = 0.999, and a
learning rate of 10−4 which is decreased to 10−5 during fine
tuning.

III. EXPERIMENTAL RESULTS

In this section, we performed quantitative and qualita-
tive evaluations to demonstrate the validity of the proposed
method. We implement the proposed network using Tensor-
flow [18]. To generate a novel color view, our method takes
around average of 0.07 seconds for 383×552 images taken
from a Lytro illum camera on an Intel Core i7 3.6GHz with
GTX Titan X. We trained the network until convergence,
which took about five hours. Source code and dataset are
available at https://youngjinyoon.github.io/.

A. Quantitative Evaluation

For the quantitative evaluation, we used the HCI light field
dataset [19] which provides 14 synthetic light field images
with 9×9 angular resolution and 768×768 spatial resolution or
more. We extracted one million patches by randomly cropping
from the 12 training examples. In order to monitor overfitting,
we use a test set of 200,000 patches from 2 images (“Buddha”
and “Mona”). The reason for selecting these two test set is
because they show various disparity ranges, texture types,
material and illumination conditions.

In Table I, we report PSNR and structural similarity (SSIM)
values to numerically compare the state-of-the-art methods to
the proposed framework. We also added PSNR and SSIM
values of results from multi-dimensional interpolations (4D
bilinear and 4D bicubic).

https://youngjinyoon.github.io/
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(a) Ground truth (b) Proposed (c) Bicubic (d) Mitra and Veeraraghavan

Fig. 3. Qualitative results on real-world images. We compare the proposed approach with Bicubic interpolation and [14]. Each image is a novel view.

Works in [14], [13] are optimization-based approaches using
disparity information on input images which model the syn-
thesis of novel views directly. We observe that a significant
number of occluded regions makes the problem difficult. As
expected, multi-dimensional approaches lead to blur artifacts
in regions with large parallax. This phenomenon can be
observed in Sec. III-B. On the other hand, our learning-based
approach produces high-quality spatial up-sampled image and
the shared network efficiently models novel view synthesis
without ringing artifacts compared to our previous network [1].

B. Qualitative Evaluation
For the SR of real-world LF images, we captured 307

LF images utilizing the Lytro Illum camera whose spatial
and angular resolution is 383×552 and 5×5, respectively1.
Sub-aperture images from raw LF images were generated
by using a geometric LF calibration toolbox [20]. We used
201 LF images as the training set, and ensured our training
set contained a variety of different scenes including textiles,
woods, flowers and fruits in order to handle a diverse test set.

As shown in Fig. 3, we compare the proposed method
against the methods of [14] and multi-dimensional bicubic
interpolation. Different from [14] which assumes the images to
be ideal, images captured from commercial LF cameras make
it hard to estimate accurate disparities. The bicubic interpola-
tion also fails to synthesize novel views between sub-aperture
images. However, our method learns to handle these inaccu-
racies without producing artifacts. We note that our diverse
training patches extracted from various sub-aperture views
help handle spatially-variant color aberration of light-field
images. As an application, we estimate a depth map using the
super-resolved LF image (first row of Fig. 3). We used a multi-
view stereo matching-based depth estimation algorithm [8] to

1The actual angular resolution of the Lytro Illum cameras is 15×15. But,
the five views from each side suffer from severe vignetting, and thus, we
decided to use only 5×5 middle views.

(a) (b)

Fig. 4. Comparison of depth estimation. (a) Estimated depth from result
images of the proposed approach. (b) Estimated depth from LF original
images.

find correspondences between sub-aperture images. As stated
in [8], a LF image with high spatial and angular resolution is
preferred to obtain accurate correspondences. The depth map
from the super-resolved LF image preserves fine details and
the high resolution image is more accurately discretized than
the original image as shown in Fig. 4.

IV. CONCLUSION

We have presented a new method for 4D light field image
super-resolution. To simultaneously up-sample the spatial and
angular resolution of a LF image, we proposed an end-to-
end trainable architecture by cascading spatial and angular
SR networks. By adopting weight sharing among the angular
network modules, we improve the efficiency of network train-
ing and also generate consistent novel views without ringing
artifacts. In addition, we provided more than 300 light field
images captured from an off-the-shelf commercial LF camera
and validated the practical performance of our method in
real-world environments. Experimental results show that our
method outperforms the state-of-the-art methods for light field
image super-resolution on synthetic and real-world datasets. In
the future, we expect that the propose framework shows better
results if we apply optical characteristics of light-field imaging
such as the wave diffraction model [21] into the learning
framework.
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