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1. Temporal Consistency Networks
For the video completion, we post-process frame-

by-frame results with the temporal consistency network
(TCN) [5]. We modified the original work [5] to match our
purpose: stabilizing the inpainted videos. Here, we provide
more detailed descriptions of the post-processing networks.
Network Design The network structure of TCN is shown
in Fig. 1. The networks consists of the encoder, the convo-
lutional GRU [2], and the decoder. The encoder inputs are
the previous stabilized frame (Pt−1), the current frame to
be stabilized (It), and their object masks. The output is the
stabilized current frame (Pt). The convolutional GRU [2]
is employed to capture a long-term temporal consistency.
Skip-connections links the encoder and the decoder fea-
tures. All the convolutional layer is the gated convolutional
layer [10].
Loss Function. The networks is trained to balance between
the temporal stability with the previous frame and the per-
ceptual similarity with the current frame.

The temporal stability loss is defined as a pixel distance
toward warped previous output:

Lts = ‖M � (Pt − P̂t−1)‖1, (1)

where P̂t−1 is the previous output Pt−1 warped by the opti-
cal flow Ft−1⇒t andM is a visibility map. The optical flow
is computed from the ground truth frames Yt, Yt−1 (training
frames without holes). We used PWC-Net for computing
the optical flow [8]. The visibility map M is defined as
M = exp(−100‖Yt − Ŷt−1)‖22).

The perceptual similarity loss is defined as follows:

Lps = ‖φ5(It)− φ5(Pt)‖1, (2)

where φs(·) is the mapping to s-th pooled feature map of
VGG-16 network [7] pre-trained on ImageNet.

The total loss is the weighted summation of two:

Ltotal = 15 · Lts + Lps. (3)

Training Data. As the network targets for stabilizing in-
painted video frames produced by our onion-peel network,

we directly uses output of the onion-peel network as input to
the temporal consistency network. We use the same training
images for the onion-peel network training.

2. Image Completion Result

In addition to Fig. 6 of the main paper, we provide more
results for the image completion guided by reference im-
ages. In Fig. 2 - 5, we compare our method against Yu et
al. [11] and Photoshop’s content aware fill [1].

3. Video Completion Results

We provide our object removal results on the DAVIS
videos [6] with shadow annotations provided by [3]. We
compare our method against two state-of-the-art meth-
ods: VINet [4] and Huang et al. [3]. In the video
file, Video completion.mp4, we provide side-by-side
comparisons on challenging test videos.
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Figure 1: Temporal consistency networks.
⊕

indicates the element-wise addition.
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Figure 2: Examples of image completion using a group of photos (Best viewed on a high-resolution display with zoom-in).
The images are from Youtube-VOS [9].
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Figure 3: Examples of image completion using a group of photos (Best viewed on a high-resolution display with zoom-in).
The images are from Youtube-VOS [9].
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Figure 4: Examples of image completion using a group of photos (Best viewed on a high-resolution display with zoom-in).
The images are from Youtube-VOS [9].
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Figure 5: Examples of image completion using a group of photos (Best viewed on a high-resolution display with zoom-in).
The images are from Youtube-VOS [9].


