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Motivation and Purpose Visual Results

» magnetic resonance imaging (MRI) is a versatile technology with m -
""‘ t

h - N
many different contrasts (e.g. see figure below for T and T5) (BT BTN

» MRI contrasts show similar structures due to same anatomy [1]

» we exploit redundancy, transfer structure from one contrast to
another and reconstruct with less data

» shorter scan times: patient comfort, save time, dynamlc imaging Ei'.hr

» Difficult to compare images of different contrasts
» Base image structure on location or direction of spatial gradients

location

direction

» From left to right: priors enhance visual quality

Quantitative Results

» Embed side information v in prior (regularization functional) with 100 .

Structure-Guided Total Variation

no prior
spatially varying matrix-field D: © — RV*V _ ry
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» Reduces to normal total variation (TV) for D =71 ; ; N meap

T, T, O median

» |sotropic structure (location) [2—4]:

D(x) = n/[Vv(x)ly (WTV)

with |Vv(x)], = V/IVVv(X)2 + 72,1 > 0 Conclusions

> Anisotropic structure (direction) [4-6}; » Exploiting redundancy (utilizing either location or direction) allows
D(x) =T — £(x)€7(x) (dTV) reconstruction from less data

» The anisotropic prior consistently outperforms the isotropic one,
leading to less artefacts and a higher level of detalil
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» Range (min to max), mean and median over 12 data sets

with £(x) = Vv(x)/[Vv(x)]
» Dual formulation allows efficient algorithms [4]

Edge Parameter 7
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