A Randomized Algorithm for Convex Optimization
and Medical Imaging Applications

Matthias J. Ehrhardt

Institute for Mathematical Innovation
University of Bath, UK

March 8, 2019

Joint work with:

Mathematics: ~ A. Chambolle, Paris
P. Richtarik, Edinburgh and KAUST
C. Schénlieb, Cambridge

PET imaging: P. Markiewicz, UCL
J. Schott, UCL

Main Aim and Outline

Main aim:
x' € arg min {Z fi(Bix) + g(X)}
i=1

» proper, convex and lower semi-continuous
» non-smooth

» nis large and/or B;x expensive

Main Aim and Outline

Main aim:

xt € arg mXin {Z fi(Bix) + g(x)}

i=1

» proper, convex and lower semi-continuous
» non-smooth

» nis large and/or B;x expensive

Outline:
1) From Inverse Problems to Optimization (Why?)
2) Randomized Algorithm for Convex Optimization (How?)
3) Application: Medical Imaging (PET)

From Inverse Problems to Optimization

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v. Evaluate A

» A: U — V (non-)linear operator between spaces U and V

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v. Evaluate A

» A: U — V (non-)linear operator between spaces U and V
» Example: Radon / X-ray transform (used in CT, PET, ...)

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v. Evaluate A

» A: U — V (non-)linear operator between spaces U and V
» Example: Radon / X-ray transform (used in CT, PET, ...)

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v. Evaluate A

» A: U — V (non-)linear operator between spaces U and V
» Example: Radon / X-ray transform (used in CT, PET, ...)

Inverse problem: given v, solve Au = v. “Invert” A

What is the problem with inverse problems?

> PET example: Au(L) = [, u(r)dr

What is the problem with inverse problems?

> PET example: Au(L) = [, u(r)dr

What is the problem with inverse problems?

> PET example: Au(L) = [, u(r)dr

Definition (Hadamard, 1902): We call an
inverse problem Au = v well-posed if

(1) a solution u* exists

(2) the solution v is unique

(3) u* depends continuously on data v.

Otherwise, it is called ill-posed.

Jacques Hadamard

What is the problem with inverse problems?

> PET example: Au(L) = [, u(r)dr

Definition (Hadamard, 1902): We call an
inverse problem Au = v well-posed if

(1) a solution u* exists
(2) the solution v is unique

(3) u* depends continuously on data v.

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed, in particular (3) is violated.

A way to solve inverse problems

Tikhonov regularization (1943)
Approximate a solution u* of Au = v via

Uy = arg min{ 1AL — V]2 +)\Hqu}
u
= (A*A + A)71A*Y

Andrey Tikhonov

A way to solve inverse problems

Variational regularization
Approximate a solution u* of Au = v via

Uy = arg muin{D(Au, v) +)\R(u)}

» data fit D: quantify fit of prediction Au to data v. Usually a
“divergence”, i.e. D(x,y) > 0and D(x,y) =0iff x =y

D(x,y) = lx = I3, Ix = ylh, /X —y +ylog(y/x),...
> regularizer R: penalize unwanted features, ensures stability

R(x) = [Ix[I3, [Ix[l1, TV(x) = Vx|, TGV, ...

PET Reconstruction with TV

N
mea@qp{E:Kumu+mbg+ADw1+bdw}
fi=l1

» Kullback—Leibler divergence

—b+blog(2) ify>0
KL(y; b) = {y °8 <Y) Yy
00 else

» Non-smooth regularization, e.g. total variation Rudin, Osher,
Fatemi 1992, Burger and Osher 2013, ... (D = V)
or directional total variation E and Betcke 2016, E et al. 2016
> Constraint 0, ifu;>0foralli
1>0(u) =

oo, else

PET Reconstruction with TV

N
Uy € argmin {Z KL(A;u + rj; b;) + A||Dul1 + 7,>0(u)}
fi=l1

» Kullback—Leibler divergence
—b+blog (2) ify>0
KL(y:b) =37 ~ 2T P8 (s) ity
00 else

» Non-smooth regularization, e.g. total variation Rudin, Osher,
Fatemi 1992, Burger and Osher 2013, ... (D = V)
or directional total variation E and Betcke 2016, E et al. 2016

» Constraint 0, ifu>0foralli
1>0(u) =

oo, else

xt € arg mXin {Z fi(Bix) + g(x)}

i=1

PET Reconstruction with TGV

N
Uy € arg min {Z KL(Aju + ri; bj) + ATGV(u) + Z>0(U)}
i=1

P> Total generalized variation Bredies, Kunisch, Pock 2010

TGV(u) = min |Vu—v|1+8|Vv|1

PET Reconstruction with TGV

N
Uy € arg min {Z KL(Aju + rj; bj) + ATGV(u) + Z>0(U)}
i=1

P> Total generalized variation Bredies, Kunisch, Pock 2010

TGV(u) = min |Vu—v|1+8|Vv|1

U, vy € arg nJivn{D(Au, b) + A Vu — v + A3V v]1 + zzo(u)}

PET Reconstruction with TGV

N
Uy € arg min {Z KL(Aju + ri; bj) + ATGV(u) + Z>0(U)}
i=1

P> Total generalized variation Bredies, Kunisch, Pock 2010

TGV (u) = mvin |Vu—v|1+BlIVv]1

U, vy € arg nuqun{D(Au, b) + A Vu — v + A3V v]1 + Zzo(u)}

xt € arg mXin {Z fi(Bix) + g(x)}

i=1

Observations

xt € arg mxin {Z fi(Bix) + g(x)}

i=1

» Proper: Extended valued f : X — RU{oo} and f # oo
> Convex: e.g. C convex = 1 convex
» Lower semi-continuous (Isc): x; — x then
f(x) < liminf f(xx)
k—00

» continuous = Isc
» (closed = ¢ Isc

» f(z) =), fi(z) is "separable”’. Not separable in x.

Observations

xt € arg mxin {Z fi(Bix) + g(x)}

i=1

» Proper: Extended valued f : X — R U {oco} and f # o
> Convex: e.g. C convex = 1 convex
» Lower semi-continuous (Isc): x; — x then
f(x) < liminf f(xx)
k—00

» continuous = Isc
» (closed = ¢ Isc

» f(z) =), fi(z) is "separable”’. Not separable in x.

Problem 1: The functions f;, g are non-smooth but “simple”
Problem 2: n is large and/or B;x expensive

Optimization

Subgradient

If f is convex and smooth, then for all x,y € X we have

fy) > £(x) + (VF(x),y — x)

Subgradient
If f is convex and smooth, then for all x,y € X we have
fy) = f(x) + (VF(x),y — x)
Extend definition to non-differentiable functions:

Definition: f : X — R U {oo} is subdifferentiable at x € X if
there exists a subgradient p € X such that for all y € X

fly) > £(x) +(p,y —x)

holds. The set of all subgradients at x € X is called the
subdifferential and denoted by Of(x).

Example: f(x) = [x| {1} if x>0
Of(x) = {[-1,1] ifx=0
{-1} ifx<0

Proximal Operators: A gradient descent point of view
(Sub-)Gradient descent: p € 0f(x) (= {Vf(x)} if f is diff.)

xXT=x—p

Proximal Operators: A gradient descent point of view
(Sub-)Gradient descent: p € 0f(x) (= {Vf(x)} if f is diff.)
xt=x—p
Implicit (Sub-)Gradient descent: p* € 9f(x™)

xT=x—ptex—0of(xh)

Proximal Operators: A gradient descent point of view
(Sub-)Gradient descent: p € 0f(x) (= {Vf(x)} if f is diff.)
xt=x—p
Implicit (Sub-)Gradient descent: p* € 9f(x™)

xT=x—ptex—0of(xh)

& xe(l+0f)xT

Proximal Operators: A gradient descent point of view
(Sub-)Gradient descent: p € 0f(x) (= {Vf(x)} if f is diff.)
xt=x—p
Implicit (Sub-)Gradient descent: p* € 9f(x™)

xT=x—ptex—0of(xh)
& xe(l+0f)xT
& xT=(4+0f)"tx = proxs(x)

Definition: The proximal operator of f is defined as
proxs(x) := (I + 9f)"}(x) .

proxs has many names:
prox / proximal / proximity / resolvent operator

Proximal Operators: A minimization point of view

Definition: The proximal operator of f is defined as

1
proxs(x) := arg min {§Hz —x|2+ f(z)}

Proximal Operators: A minimization point of view

Definition: The proximal operator of f is defined as

1
prox(x) := arg min {§Hz —x|2+ f(z)}

Proposition: (/ + 0f)~!(x) = argmin, {3z — x||2 + f(2)}

Proximal Operators: A minimization point of view

Definition: The proximal operator of f is defined as

1
prox(x) := arg min {§Hz —x|2+ f(z)}

Proposition: (/ + 0f)~!(x) = argmin, {3z — x||2 + f(2)}
"Proof”: 1
xT = arg min {2||z — x|+ f(z)}

1
0¢ (9{2||x+ —x|?+ f(x+)}

0€xT —x+0f(xT)
x € (I 4+ 0f)x™
xt = (14 0f) 'x

S A

Proximal operator: properties and examples

1
prox(x) = arg min {2Hz —x|? + f(z)}
Many rules: e.g.
Proposition: Let f be separable, i.e. f(x) =), fi(xi). Then

prox¢(x)i = proxg(x;) -

Examples:
> f(x) = %HXH% prox(x) = %x
> £ = lixll: xi—1 if x> 1
proxs(x); = < 0 Ixi| <1
xi+1 ifx<—1
¢t proxg(x) = projc(x)

> f =1
> f=1>0: proxg(x); = max(x;,0)

Proximal operator: properties and examples

1
prox(x) = arg min {2Hz —x|? + f(z)}
Many rules: e.g.
Proposition: Let f be separable, i.e. f(x) =), fi(xi). Then

prox¢(x)i = proxg(x;) -

Examples:
> f(x) = %HXH% prox(x) = %x
> £ = lixl: xi—1 ifx>1
proxs(x); = < 0 Ixi| <1
xi+1 ifx<—1
> f=uc: proxe(x) = projc(x)
> f=1>0: proxg(x); = max(x;,0)

Problem: What is the proximal operator of f(x) = ||Cx||1?

The way out: Saddle Point Problems

x* € arg mXin {Z fi(Bix) + g(x)}

i=1
f(y) =22 filyi), B=[Bu1;...; By

x* € arg min {f(Bx) + g(x)}

The way out: Saddle Point Problems
x¥ € arg mXin {Z fi(Bix) + g(x)}

i=1
> f(y):=>;fi(yi), B=[B1;...;B,]
x* € argmin {f(Bx) + g(x)}
Definition: The convex conjugate of f is given by
*(y) :=sup(z,y) — f(2).

Theorem: Let f be proper, convex and Isc, then
f(z) = (f7)"(2) = sup(z,y) — F*(y).
y

The way out: Saddle Point Problems

x* € arg mXin {Z fi(Bix) + g(x)}

i=1
> f(y) =2 fi(yi), B=[B1;...; By
x* € arg min {f(Bx) + g(x)}
Definition: The convex conjugate of f is given by
Hy) —smpizy) @)
Theorem: Let f be proper, convex and Isc, then

f(z) = (f")"(2) = St;p<z,y> — f*(y).

(>, y%) € argmin sup{<BX7y> - (y) + g(X)}
y

Primal-Dual Hybrid Gradient (PDHG) Algorithm!

Given x0,y0 y9 =0
(1) xk+1 = (xk — 7B*y*)
(2) yk+1 _ (yk + OBXk'H)
(3) y*Tt = yF oy T — y5)

» evaluation of B and B*

| 2

» convergence: 0 = 1,07|B|> < 1

lPock, Cremers, Bischof, Chambolle '09, Chambolle and Pock '11

Primal-Dual Hybrid Gradient (PDHG) Algorithm!

Given x0,y0 y9 =0

(1) X+t = (x* = X1 Bi¥)

(2) yFt = (yk + oBixk*1) i=1,.

..,n
(3) yrtt =y 1oyl — yh)

i=1,...,n

n]T B*y = Z, 1By

1Pock, Cremers, Bischof, Chambolle '09, Chambolle and Pock '11

Primal-Dual Hybrid Gradient (PDHG) Algorithm!

Given x0,y0 y9 =0

(1) X+t = (x* = X1 Bi¥)

(2) yFt = (yk +oBixk*1) i=1,.

..,n
(3) yrtt =y 1oyl — yh)

i=1,...,n

n]T B*y = Z, 1By

lPock, Cremers, Bischof, Chambolle '09, Chambolle and Pock '11

Stochastic PDHG Algorithm?

Given xo,yo,}_/0 = yo
(1) xk+t = prong(xk - > BT}_/;()

Select S¥* {1,..., n} randomly.
K1 prox,, e+ (yK + oiBixktt) i e sk
(2) yi - k ! I
; else

—k+1 k+1 0 (. k+1 k 2 _
(3) =Y -I'E(y, _y,) I—].,...,n

> probabilities pi == P(i € SkT1) > 0 (proper sampling)
> 5, By K can be computed using only B’ for i ¢ Sk
> evaluatlon of B; and B only for i € SK*1.

1Chambo|le, E, Richtarik, Schonlieb '18

Convergence Guarantees

Step Size Condition with ESO!

Definition (Expected Separable Overapproximation, ESO):
Random subset S C {1,...,n}. The ESO parameters v; fulfill

the ESO inequality if for all h
2 n
Es <Y pivillhill? .
i=1

> Cih

ieS

1Qu, Richtérik, Zhang '14

Step Size Condition with ESO!

Definition (Expected Separable Overapproximation, ESO):
Random subset S C {1,...,n}. The ESO parameters v; fulfill

the ESO inequality if for all h
2 n
<Y pivillhill? .
i=1

> Cih
ieS

Example (Full Sampling): S = {1,...,n},p; =1, v; = ||C||?

LHS = ||C*h]|?

Es

1Qu, Richtérik, Zhang '14

Step Size Condition with ESO!

Definition (Expected Separable Overapproximation, ESO):
Random subset S C {1,...,n}. The ESO parameters v; fulfill

the ESO inequality if for all h
2 n
<Y pivillhill? .
i=1

> Cih
ieS

Example (Full Sampling): S = {1,...,n},p; =1, v; = ||C||?

LHS = ||C*h||* < [|C*[|?||Al>

Es

1Qu, Richtérik, Zhang '14

Step Size Condition with ESO!

Definition (Expected Separable Overapproximation, ESO):
Random subset S C {1,...,n}. The ESO parameters v; fulfill

the ESO inequality if for all h
2 n
Es <Y pivillhill? .
i=1

> Cih

ieS

Example (Full Sampling): S = {1,...,n},p; =1, v; = ||C||?
n
LHS = [[C*AlI> < |C*|PP1AI2 = > (1T hill?
i=1

1Qu, Richtérik, Zhang '14

Step Size Condition with ESO!

Definition (Expected Separable Overapproximation, ESO):
Random subset S C {1,...,n}. The ESO parameters v; fulfill

the ESO inequality if for all h
2 n
Es <Y pivillhill? .
i=1

> Cih

ieS

Example (Full Sampling): S = {1,...,n},p; =1, v; = ||C||?
n
LHS = [[C*AlI> < |C*|PP1AI2 = > (1T hill?
i=1

Example (Serial Sampling): S = {i}, v; = ||C;||?
n

LHS = pil|Crhill?
i=1

1Qu, Richtérik, Zhang '14

Step Size Condition with ESO!

Definition (Expected Separable Overapproximation, ESO):
Random subset S C {1,...,n}. The ESO parameters v; fulfill

the ESO inequality if for all h
2 n
Es <Y pivillhill? .
i=1

> Cih

ieS

Example (Full Sampling): S = {1,...,n},p; =1, v; = ||C||?
n
LHS = [[C*AlI> < |C*|PP1AI2 = > (1T hill?
i=1

Example (Serial Sampling): S = {i}, v; = ||C;||?
n n
LHS = pillCihill? <) pill G |1 il
i=1 i=1

1Qu, Richtérik, Zhang '14

Bregman Distance

Definition: The Bregman distance of f is defined as
D?(u,v) = f(u) — f(v) — (p,u—v), p € Of(v).

Convergence of SPDHG

Applications

Convergence to Saddle Point (dTV): Sanity Check

saddle point (3000 iter PDHG)

@

Faster than PDHG (dTV), 100 epochs

PDHG

SPDHG

Faster than PDHG (dTV), 10 epochs

PDHG

€ &g

SPDHG

0

A

Faster than PDHG (dTV), 5 epochs

PDHG

SPDHG

Convergence to Saddle Point (TGV): Sanity Check

saddle point (3000 iter PDHG)

Faster than PDHG (TGV), 10 epochs

PDHG

s G

SPDHG

& &3

&
A

Quantitative results

———

-~ PDHG
B ¥— SPDHG (21 subsets)
4 —=— SPDHG (252)
3
2
40/ ..
5 [SNPRE
I
o

15 20 25 30

Conclusions and Outlook

» Randomized optimisation for cost deterministic
functionals with “separable structure”

» Generalisation of PDHG
» Convergence for arbitrary sampling

» Much faster PET reconstruction: making
advanced models feasible for clinical data

randomized

Not shown today: 7 Vil

» Convergence theorems: 1) O(1/k?)
acceleration, 2) linear convergence

Future work:

+— % PDHG

"
~ 10 - ¥ SPDHG (21 subsets)

P almost sure convergence of iterates v e

» sampling: 1) optimal, 2) adaptive el

P non-convex extension with gradients o om LAY

