
A Randomized Algorithm for Convex Optimization
and Medical Imaging Applications

Matthias J. Ehrhardt

Institute for Mathematical Innovation
University of Bath, UK

March 8, 2019

Joint work with:

Mathematics: A. Chambolle, Paris
P. Richtárik, Edinburgh and KAUST
C. Schönlieb, Cambridge

PET imaging: P. Markiewicz, UCL
J. Schott, UCL

Main Aim and Outline

Main aim:

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I proper, convex and lower semi-continuous

I non-smooth

I n is large and/or Bix expensive

Outline:

1) From Inverse Problems to Optimization (Why?)

2) Randomized Algorithm for Convex Optimization (How?)

3) Application: Medical Imaging (PET)

Main Aim and Outline

Main aim:

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I proper, convex and lower semi-continuous

I non-smooth

I n is large and/or Bix expensive

Outline:

1) From Inverse Problems to Optimization (Why?)

2) Randomized Algorithm for Convex Optimization (How?)

3) Application: Medical Imaging (PET)

From Inverse Problems to Optimization

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v . Evaluate A

I A : U → V (non-)linear operator between spaces U and V

I Example: Radon / X-ray transform (used in CT, PET, ...)

Au(L) =

∫
L
u(r)dr

→

Inverse problem: given v , solve Au = v . “Invert” A

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v . Evaluate A

I A : U → V (non-)linear operator between spaces U and V

I Example: Radon / X-ray transform (used in CT, PET, ...)

Au(L) =

∫
L
u(r)dr

→

Inverse problem: given v , solve Au = v . “Invert” A

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v . Evaluate A

I A : U → V (non-)linear operator between spaces U and V

I Example: Radon / X-ray transform (used in CT, PET, ...)

Au(L) =

∫
L
u(r)dr

→

Inverse problem: given v , solve Au = v . “Invert” A

What is an inverse problem? Inverse to what?

Forward problem: given u, compute Au = v . Evaluate A

I A : U → V (non-)linear operator between spaces U and V

I Example: Radon / X-ray transform (used in CT, PET, ...)

Au(L) =

∫
L
u(r)dr

→

Inverse problem: given v , solve Au = v . “Invert” A

What is the problem with inverse problems?

I PET example: Au(L) =
∫
L u(r)dr

→

Definition (Hadamard, 1902): We call an
inverse problem Au = v well-posed if

(1) a solution u∗ exists

(2) the solution u∗ is unique

(3) u∗ depends continuously on data v .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed, in particular (3) is violated.

What is the problem with inverse problems?

I PET example: Au(L) =
∫
L u(r)dr

→

Definition (Hadamard, 1902): We call an
inverse problem Au = v well-posed if

(1) a solution u∗ exists

(2) the solution u∗ is unique

(3) u∗ depends continuously on data v .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed, in particular (3) is violated.

What is the problem with inverse problems?

I PET example: Au(L) =
∫
L u(r)dr

→

Definition (Hadamard, 1902): We call an
inverse problem Au = v well-posed if

(1) a solution u∗ exists

(2) the solution u∗ is unique

(3) u∗ depends continuously on data v .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed, in particular (3) is violated.

What is the problem with inverse problems?

I PET example: Au(L) =
∫
L u(r)dr

→

Definition (Hadamard, 1902): We call an
inverse problem Au = v well-posed if

(1) a solution u∗ exists

(2) the solution u∗ is unique

(3) u∗ depends continuously on data v .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed, in particular (3) is violated.

A way to solve inverse problems

Tikhonov regularization (1943)
Approximate a solution u∗ of Au = v via

uλ = arg min
u

{
‖Au − v‖2 + λ‖u‖2

}
= (A∗A + λI)−1A∗v

Andrey Tikhonov

A way to solve inverse problems

Variational regularization
Approximate a solution u∗ of Au = v via

uλ = arg min
u

{
D(Au, v) + λR(u)

}
I data fit D: quantify fit of prediction Au to data v . Usually a

“divergence”, i.e. D(x , y) ≥ 0 and D(x , y) = 0 iff x = y

D(x , y) = ‖x − y‖2
2, ‖x − y‖1,

∫
x − y + y log(y/x), . . .

I regularizer R: penalize unwanted features, ensures stability

R(x) = ‖x‖2
2, ‖x‖1,TV(x) = ‖∇x‖1,TGV, . . .

PET Reconstruction with TV

uλ ∈ arg min
u

{
N∑
i=1

KL(Aiu + ri ; bi) + λ‖Du‖1 + ı≥0(u)

}

I Kullback–Leibler divergence

KL(y ; b) =

{
y − b + b log

(
b
y

)
if y > 0

∞ else

I Non-smooth regularization, e.g. total variation Rudin, Osher,

Fatemi 1992, Burger and Osher 2013, ... (D = ∇)
or directional total variation E and Betcke 2016, E et al. 2016

I Constraint
ı≥0(u) =

{
0, if ui ≥ 0 for all i

∞, else

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

PET Reconstruction with TV

uλ ∈ arg min
u

{
N∑
i=1

KL(Aiu + ri ; bi) + λ‖Du‖1 + ı≥0(u)

}

I Kullback–Leibler divergence

KL(y ; b) =

{
y − b + b log

(
b
y

)
if y > 0

∞ else

I Non-smooth regularization, e.g. total variation Rudin, Osher,

Fatemi 1992, Burger and Osher 2013, ... (D = ∇)
or directional total variation E and Betcke 2016, E et al. 2016

I Constraint
ı≥0(u) =

{
0, if ui ≥ 0 for all i

∞, else

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

PET Reconstruction with TGV

uλ ∈ arg min
u

{
N∑
i=1

KL(Aiu + ri ; bi) + λTGV(u) + ı≥0(u)

}

I Total generalized variation Bredies, Kunisch, Pock 2010

TGV(u) = min
v
‖∇u − v‖1 + β‖∇v‖1

uλ, vλ ∈ arg min
u,v

{
D(Au, b) + λ‖∇u − v‖1 + λβ‖∇v‖1 + ı≥0(u)

}

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

PET Reconstruction with TGV

uλ ∈ arg min
u

{
N∑
i=1

KL(Aiu + ri ; bi) + λTGV(u) + ı≥0(u)

}

I Total generalized variation Bredies, Kunisch, Pock 2010

TGV(u) = min
v
‖∇u − v‖1 + β‖∇v‖1

uλ, vλ ∈ arg min
u,v

{
D(Au, b) + λ‖∇u − v‖1 + λβ‖∇v‖1 + ı≥0(u)

}

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

PET Reconstruction with TGV

uλ ∈ arg min
u

{
N∑
i=1

KL(Aiu + ri ; bi) + λTGV(u) + ı≥0(u)

}

I Total generalized variation Bredies, Kunisch, Pock 2010

TGV(u) = min
v
‖∇u − v‖1 + β‖∇v‖1

uλ, vλ ∈ arg min
u,v

{
D(Au, b) + λ‖∇u − v‖1 + λβ‖∇v‖1 + ı≥0(u)

}

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

Observations

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I Proper: Extended valued f : X 7→ R ∪ {∞} and f 6≡ ∞
I Convex: e.g. C convex ⇒ ıC convex

I Lower semi-continuous (lsc): xk → x then

f (x) ≤ lim inf
k→∞

f (xk)

I continuous ⇒ lsc
I C closed ⇒ ıC lsc

I f (z) =
∑

i fi (zi) is “separable”. Not separable in x .

Problem 1: The functions fi , g are non-smooth but “simple”
Problem 2: n is large and/or Bix expensive

Observations

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I Proper: Extended valued f : X 7→ R ∪ {∞} and f 6≡ ∞
I Convex: e.g. C convex ⇒ ıC convex

I Lower semi-continuous (lsc): xk → x then

f (x) ≤ lim inf
k→∞

f (xk)

I continuous ⇒ lsc
I C closed ⇒ ıC lsc

I f (z) =
∑

i fi (zi) is “separable”. Not separable in x .

Problem 1: The functions fi , g are non-smooth but “simple”
Problem 2: n is large and/or Bix expensive

Optimization

Subgradient
If f is convex and smooth, then for all x , y ∈ X we have

f (y) ≥ f (x) + 〈∇f (x), y − x〉

Extend definition to non-differentiable functions:

Definition: f : X 7→ R ∪ {∞} is subdifferentiable at x ∈ X if
there exists a subgradient p ∈ X such that for all y ∈ X

f (y) ≥ f (x) + 〈p, y − x〉

holds. The set of all subgradients at x ∈ X is called the
subdifferential and denoted by ∂f (x).

Example: f (x) = |x |

∂f (x) =


{1} if x > 0

[−1, 1] if x = 0

{−1} if x < 0

Subgradient
If f is convex and smooth, then for all x , y ∈ X we have

f (y) ≥ f (x) + 〈∇f (x), y − x〉

Extend definition to non-differentiable functions:

Definition: f : X 7→ R ∪ {∞} is subdifferentiable at x ∈ X if
there exists a subgradient p ∈ X such that for all y ∈ X

f (y) ≥ f (x) + 〈p, y − x〉

holds. The set of all subgradients at x ∈ X is called the
subdifferential and denoted by ∂f (x).

Example: f (x) = |x |

∂f (x) =


{1} if x > 0

[−1, 1] if x = 0

{−1} if x < 0

Proximal Operators: A gradient descent point of view

(Sub-)Gradient descent: p ∈ ∂f (x) (= {∇f (x)} if f is diff.)

x+ = x − p

Implicit (Sub-)Gradient descent: p+ ∈ ∂f (x+)

x+ = x − p+ ∈ x − ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x =: proxf (x)

Definition: The proximal operator of f is defined as

proxf (x) := (I + ∂f)−1(x) .

proxf has many names:
prox / proximal / proximity / resolvent operator

Proximal Operators: A gradient descent point of view

(Sub-)Gradient descent: p ∈ ∂f (x) (= {∇f (x)} if f is diff.)

x+ = x − p

Implicit (Sub-)Gradient descent: p+ ∈ ∂f (x+)

x+ = x − p+ ∈ x − ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x =: proxf (x)

Definition: The proximal operator of f is defined as

proxf (x) := (I + ∂f)−1(x) .

proxf has many names:
prox / proximal / proximity / resolvent operator

Proximal Operators: A gradient descent point of view

(Sub-)Gradient descent: p ∈ ∂f (x) (= {∇f (x)} if f is diff.)

x+ = x − p

Implicit (Sub-)Gradient descent: p+ ∈ ∂f (x+)

x+ = x − p+ ∈ x − ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x =: proxf (x)

Definition: The proximal operator of f is defined as

proxf (x) := (I + ∂f)−1(x) .

proxf has many names:
prox / proximal / proximity / resolvent operator

Proximal Operators: A gradient descent point of view

(Sub-)Gradient descent: p ∈ ∂f (x) (= {∇f (x)} if f is diff.)

x+ = x − p

Implicit (Sub-)Gradient descent: p+ ∈ ∂f (x+)

x+ = x − p+ ∈ x − ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x =: proxf (x)

Definition: The proximal operator of f is defined as

proxf (x) := (I + ∂f)−1(x) .

proxf has many names:
prox / proximal / proximity / resolvent operator

Proximal Operators: A minimization point of view

Definition: The proximal operator of f is defined as

proxf (x) := arg min
z

{
1

2
‖z − x‖2 + f (z)

}

Proposition: (I + ∂f)−1(x) = arg minz

{
1
2‖z − x‖2 + f (z)

}
”Proof”:

x+ = arg min
z

{
1

2
‖z − x‖2 + f (z)

}
⇔ 0 ∈ ∂

{
1

2
‖x+ − x‖2 + f (x+)

}
⇔ 0 ∈ x+ − x + ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x

Proximal Operators: A minimization point of view

Definition: The proximal operator of f is defined as

proxf (x) := arg min
z

{
1

2
‖z − x‖2 + f (z)

}
Proposition: (I + ∂f)−1(x) = arg minz

{
1
2‖z − x‖2 + f (z)

}

”Proof”:
x+ = arg min

z

{
1

2
‖z − x‖2 + f (z)

}
⇔ 0 ∈ ∂

{
1

2
‖x+ − x‖2 + f (x+)

}
⇔ 0 ∈ x+ − x + ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x

Proximal Operators: A minimization point of view

Definition: The proximal operator of f is defined as

proxf (x) := arg min
z

{
1

2
‖z − x‖2 + f (z)

}
Proposition: (I + ∂f)−1(x) = arg minz

{
1
2‖z − x‖2 + f (z)

}
”Proof”:

x+ = arg min
z

{
1

2
‖z − x‖2 + f (z)

}
⇔ 0 ∈ ∂

{
1

2
‖x+ − x‖2 + f (x+)

}
⇔ 0 ∈ x+ − x + ∂f (x+)

⇔ x ∈ (I + ∂f)x+

⇔ x+ = (I + ∂f)−1x

Proximal operator: properties and examples

proxf (x) = arg min
z

{
1

2
‖z − x‖2 + f (z)

}
Many rules: e.g.

Proposition: Let f be separable, i.e. f (x) =
∑

i fi (xi). Then

proxf (x)i = proxfi (xi) .

Examples:
I f (x) = 1

2‖x‖
2
2: proxf (x) = 1

2x
I f (x) = ‖x‖1:

proxf (x)i =


xi − 1 if xi > 1

0 |xi | ≤ 1

xi + 1 if xi < −1

I f = ıC : proxf (x) = projC (x)
I f = ı≥0: proxf (x)i = max(xi , 0)

Problem: What is the proximal operator of f (x) = ‖Cx‖1?

Proximal operator: properties and examples

proxf (x) = arg min
z

{
1

2
‖z − x‖2 + f (z)

}
Many rules: e.g.

Proposition: Let f be separable, i.e. f (x) =
∑

i fi (xi). Then

proxf (x)i = proxfi (xi) .

Examples:
I f (x) = 1

2‖x‖
2
2: proxf (x) = 1

2x
I f (x) = ‖x‖1:

proxf (x)i =


xi − 1 if xi > 1

0 |xi | ≤ 1

xi + 1 if xi < −1

I f = ıC : proxf (x) = projC (x)
I f = ı≥0: proxf (x)i = max(xi , 0)

Problem: What is the proximal operator of f (x) = ‖Cx‖1?

The way out: Saddle Point Problems

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I f (y) :=
∑

i fi (yi), B = [B1; . . . ; Bn]

x] ∈ arg min
x
{f (Bx) + g(x)}

Definition: The convex conjugate of f is given by

f ∗(y) := sup
z
〈z , y〉 − f (z).

Theorem: Let f be proper, convex and lsc, then

f (z) = (f ∗)∗(z) = sup
y
〈z , y〉 − f ∗(y).

(x], y]) ∈ arg min
x

sup
y

{
〈Bx , y〉 − f ∗(y) + g(x)

}

The way out: Saddle Point Problems

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I f (y) :=
∑

i fi (yi), B = [B1; . . . ; Bn]

x] ∈ arg min
x
{f (Bx) + g(x)}

Definition: The convex conjugate of f is given by

f ∗(y) := sup
z
〈z , y〉 − f (z).

Theorem: Let f be proper, convex and lsc, then

f (z) = (f ∗)∗(z) = sup
y
〈z , y〉 − f ∗(y).

(x], y]) ∈ arg min
x

sup
y

{
〈Bx , y〉 − f ∗(y) + g(x)

}

The way out: Saddle Point Problems

x] ∈ arg min
x

{
n∑

i=1

fi (Bix) + g(x)

}

I f (y) :=
∑

i fi (yi), B = [B1; . . . ; Bn]

x] ∈ arg min
x
{f (Bx) + g(x)}

Definition: The convex conjugate of f is given by

f ∗(y) := sup
z
〈z , y〉 − f (z).

Theorem: Let f be proper, convex and lsc, then

f (z) = (f ∗)∗(z) = sup
y
〈z , y〉 − f ∗(y).

(x], y]) ∈ arg min
x

sup
y

{
〈Bx , y〉 − f ∗(y) + g(x)

}

Primal-Dual Hybrid Gradient (PDHG) Algorithm1

Given x0, y0, y0 = y0

(1) xk+1 = proxτg (xk − τB∗yk)

(2) yk+1 = proxσf ∗(yk + σBxk+1)

(3) yk+1 = yk+1 + θ(yk+1 − yk)

I evaluation of B and B∗

I proximal operator

I convergence: θ = 1, στ‖B‖2 < 1

1Pock, Cremers, Bischof, Chambolle ’09, Chambolle and Pock ’11

Primal-Dual Hybrid Gradient (PDHG) Algorithm1

Given x0, y0, y0 = y0

(1) xk+1 = proxτg (xk −
∑n

i=1B∗i y
k
i)

(2) yk+1
i = proxσf ∗i (yki + σBix

k+1) i = 1, . . . , n

(3) yk+1
i = yk+1

i + θ(yk+1
i − yki) i = 1, . . . , n

I f (y) :=
∑

i fi (yi), [proxf ∗(y)]i = proxf ∗i (yi)

I B = [B1; . . . ; Bn]T , B∗y =
∑n

i=1 B∗i yi

1Pock, Cremers, Bischof, Chambolle ’09, Chambolle and Pock ’11

Primal-Dual Hybrid Gradient (PDHG) Algorithm1

Given x0, y0, y0 = y0

(1) xk+1 = proxτg (xk −
∑n

i=1B∗i y
k
i)

(2) yk+1
i = proxσf ∗i (yki + σBix

k+1) i = 1, . . . , n

(3) yk+1
i = yk+1

i + θ(yk+1
i − yki) i = 1, . . . , n

I f (y) :=
∑

i fi (yi), [proxf ∗(y)]i = proxf ∗i (yi)

I B = [B1; . . . ; Bn]T , B∗y =
∑n

i=1 B∗i yi

1Pock, Cremers, Bischof, Chambolle ’09, Chambolle and Pock ’11

Stochastic PDHG Algorithm1

Given x0, y0, y0 = y0

(1) xk+1 = proxτg (xk −
∑n

i=1 B∗i y
k
i)

Select Sk+1 ⊂ {1, . . . , n} randomly.

(2) yk+1
i =

{
proxσi f ∗i (yki + σiBix

k+1) i ∈ Sk+1

yki else

(3) yk+1
i = yk+1

i + θ
pi

(yk+1
i − yki) i = 1, . . . , n

I probabilities pi := P(i ∈ Sk+1) > 0 (proper sampling)

I
∑n

i=1 B∗i y
k
i can be computed using only B∗i for i ∈ Sk

I evaluation of Bi and B∗i only for i ∈ Sk+1.

1Chambolle, E, Richtárik, Schönlieb ’18

Convergence Guarantees

Step Size Condition with ESO1

Tall matrix C = [C1; . . . ; Cn], C∗h =
∑n

i=1 C∗i hi

Definition (Expected Separable Overapproximation, ESO):
Random subset S ⊂ {1, . . . , n}. The ESO parameters vi fulfill
the ESO inequality if for all h

ES

∥∥∥∥∑
i∈S

C∗i hi

∥∥∥∥2

≤
n∑

i=1

pivi‖hi‖2 .

Example (Full Sampling): S = {1, . . . , n}, pi = 1, vi = ‖C‖2

LHS = ‖C∗h‖2

≤ ‖C∗‖2‖h‖2

=
n∑

i=1

‖C∗‖2‖hi‖2

Example (Serial Sampling): S = {i}, vi = ‖Ci‖2

LHS =
n∑

i=1

pi‖C∗i hi‖2

≤
n∑

i=1

pi‖C∗i ‖2‖hi‖2

1Qu, Richtárik, Zhang ’14

Step Size Condition with ESO1

Tall matrix C = [C1; . . . ; Cn], C∗h =
∑n

i=1 C∗i hi

Definition (Expected Separable Overapproximation, ESO):
Random subset S ⊂ {1, . . . , n}. The ESO parameters vi fulfill
the ESO inequality if for all h

ES

∥∥∥∥∑
i∈S

C∗i hi

∥∥∥∥2

≤
n∑

i=1

pivi‖hi‖2 .

Example (Full Sampling): S = {1, . . . , n}, pi = 1, vi = ‖C‖2

LHS = ‖C∗h‖2

≤ ‖C∗‖2‖h‖2

=
n∑

i=1

‖C∗‖2‖hi‖2

Example (Serial Sampling): S = {i}, vi = ‖Ci‖2

LHS =
n∑

i=1

pi‖C∗i hi‖2

≤
n∑

i=1

pi‖C∗i ‖2‖hi‖2

1Qu, Richtárik, Zhang ’14

Step Size Condition with ESO1

Tall matrix C = [C1; . . . ; Cn], C∗h =
∑n

i=1 C∗i hi

Definition (Expected Separable Overapproximation, ESO):
Random subset S ⊂ {1, . . . , n}. The ESO parameters vi fulfill
the ESO inequality if for all h

ES

∥∥∥∥∑
i∈S

C∗i hi

∥∥∥∥2

≤
n∑

i=1

pivi‖hi‖2 .

Example (Full Sampling): S = {1, . . . , n}, pi = 1, vi = ‖C‖2

LHS = ‖C∗h‖2 ≤ ‖C∗‖2‖h‖2

=
n∑

i=1

‖C∗‖2‖hi‖2

Example (Serial Sampling): S = {i}, vi = ‖Ci‖2

LHS =
n∑

i=1

pi‖C∗i hi‖2

≤
n∑

i=1

pi‖C∗i ‖2‖hi‖2

1Qu, Richtárik, Zhang ’14

Step Size Condition with ESO1

Tall matrix C = [C1; . . . ; Cn], C∗h =
∑n

i=1 C∗i hi

Definition (Expected Separable Overapproximation, ESO):
Random subset S ⊂ {1, . . . , n}. The ESO parameters vi fulfill
the ESO inequality if for all h

ES

∥∥∥∥∑
i∈S

C∗i hi

∥∥∥∥2

≤
n∑

i=1

pivi‖hi‖2 .

Example (Full Sampling): S = {1, . . . , n}, pi = 1, vi = ‖C‖2

LHS = ‖C∗h‖2 ≤ ‖C∗‖2‖h‖2 =
n∑

i=1

‖C∗‖2‖hi‖2

Example (Serial Sampling): S = {i}, vi = ‖Ci‖2

LHS =
n∑

i=1

pi‖C∗i hi‖2

≤
n∑

i=1

pi‖C∗i ‖2‖hi‖2

1Qu, Richtárik, Zhang ’14

Step Size Condition with ESO1

Tall matrix C = [C1; . . . ; Cn], C∗h =
∑n

i=1 C∗i hi

Definition (Expected Separable Overapproximation, ESO):
Random subset S ⊂ {1, . . . , n}. The ESO parameters vi fulfill
the ESO inequality if for all h

ES

∥∥∥∥∑
i∈S

C∗i hi

∥∥∥∥2

≤
n∑

i=1

pivi‖hi‖2 .

Example (Full Sampling): S = {1, . . . , n}, pi = 1, vi = ‖C‖2

LHS = ‖C∗h‖2 ≤ ‖C∗‖2‖h‖2 =
n∑

i=1

‖C∗‖2‖hi‖2

Example (Serial Sampling): S = {i}, vi = ‖Ci‖2

LHS =
n∑

i=1

pi‖C∗i hi‖2

≤
n∑

i=1

pi‖C∗i ‖2‖hi‖2

1Qu, Richtárik, Zhang ’14

Step Size Condition with ESO1

Tall matrix C = [C1; . . . ; Cn], C∗h =
∑n

i=1 C∗i hi

Definition (Expected Separable Overapproximation, ESO):
Random subset S ⊂ {1, . . . , n}. The ESO parameters vi fulfill
the ESO inequality if for all h

ES

∥∥∥∥∑
i∈S

C∗i hi

∥∥∥∥2

≤
n∑

i=1

pivi‖hi‖2 .

Example (Full Sampling): S = {1, . . . , n}, pi = 1, vi = ‖C‖2

LHS = ‖C∗h‖2 ≤ ‖C∗‖2‖h‖2 =
n∑

i=1

‖C∗‖2‖hi‖2

Example (Serial Sampling): S = {i}, vi = ‖Ci‖2

LHS =
n∑

i=1

pi‖C∗i hi‖2 ≤
n∑

i=1

pi‖C∗i ‖2‖hi‖2

1Qu, Richtárik, Zhang ’14

Bregman Distance

Definition: The Bregman distance of f is defined as

Dp
f (u, v) = f (u)− f (v)− 〈p, u − v〉 , p ∈ ∂f (v).

v u

Dp
f (u, v)f (u)

f

〈p, u − v〉+ f (v)

Convergence of SPDHG

Theorem: Chambolle, E, Richtárik, Schönlieb ’18

Let (x], y]) be a saddle point, θ = 1 and choose σi , τ such that
there exist ESO parameters vi of C = [C1; . . . ,Cn] with
Ci =

√
σiτBi which satisfy

vi < pi .

Then

I Almost surely: Dr]
g (xk , x]) + Dq]

f ∗ (yk , y])→ 0

I Rate for ergodic sequence (xK , yK) = 1
K

∑K
k=1(xk , yk)

E
{
Dr]
g (xK , x

]) + Dq]

f ∗ (yK , y
])
}
≤ C

K

Applications

Convergence to Saddle Point (dTV): Sanity Check

saddle point (3000 iter PDHG)

SPDHG (100 epochs, 100 subsets)

Faster than PDHG (dTV), 100 epochs

PDHG

SPDHG

Faster than PDHG (dTV), 10 epochs

PDHG

SPDHG

Faster than PDHG (dTV), 5 epochs

PDHG

SPDHG

Convergence to Saddle Point (TGV): Sanity Check

saddle point (3000 iter PDHG)

SPDHG (10 epochs, 252 subsets)

Faster than PDHG (TGV), 10 epochs

PDHG

SPDHG

Quantitative results

Conclusions and Outlook

I Randomized optimisation for cost
functionals with “separable structure”

I Generalisation of PDHG

I Convergence for arbitrary sampling

I Much faster PET reconstruction: making
advanced models feasible for clinical data

Not shown today:

I Convergence theorems: 1) O(1/k2)
acceleration, 2) linear convergence

Future work:

I almost sure convergence of iterates

I sampling: 1) optimal, 2) adaptive

I non-convex extension with gradients

deterministic

randomized

