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Main Aim and Outline

x' € arg mXin {Z fi(Aix) + g(x)}

i=1

» proper, convex and lower semi-continuous

» n large and/or A;x expensive

Outline:
1) Why? Inverse Problems and Optimization
2) How? Randomized Algorithms for Convex Optimization
3) So what? Applications: PET, CT, ...



CT Reconstruction with TV

Total variation (TV)
Rudin, Osher, Fatemi '92

R(x) = 1 Dx] ‘

S
n {Z 1Kix — bil[2 + All Dxl: +@+(X)}

Jj=1

S ) =lly = bill* i€ n]
min {; fi(Aix) +g(x)} A,-yz Ki y’ € [n]
= g(x) = \|Dx||1 + 14-(x)




Motion corrected CT reconstruction

min {Z | K Mix — bi||> + R(x)}

i=1
» M, motion transformation
» here s = 10 motion gates; computations are a bottleneck
» No motion correction: M; = |

1st.state last state

7y .

e.g. Delplancke, Thielemans, Ehrhardt '21



Parallel MRI

min {Z |SFCix — bi||*> + R(x)}

i=1

» (; sensitivity map for ith MR coil, s = 12

Pruessmann et al. '99



Stochastic Optimisation Algorithms



Building blocks for Convex Optimisation
Template:

min {f(Ax) + g(x) = F(x) + g(x)}

» Ingredient 1 (gradient descent)
xT = x - 17VF(x)

» Ingredient 2 (proximal point algorithm)
1
xT = prox,4(x) = argmin {2||z —x|?+ Tg(z)}

» Ingredient 3 (conjugation)
if f is prox-friendly, but f o A is not: split f and A
f(Ax) = £ (Ax) = sup, {(Ax,y) — f*(x)}

Dual: min, {f*(y)+ g"(—=A"y)}
Primal-Dual: min, max, {(Ax,y) — f*(y) + g(x)}



Building Algorithms

Template:  miny, {f(Ax) + g(x) = F(x) + g(x)}
New algorithms are designed by mix-and-match:

Proximal Gradient Descent: Combettes and Wajs '05
xt = prox, (x = TVF(x))

Primal-Dual Hybrid Gradient Chambolle and Pock 11
xt = prox, (x — TA*y)
X=x+0(xT —x)

yt = prox,«(y + 0 AX)



Revisiting Gradient Descent: SGD and its variants (g = 0)
GD

xt =x—7VF(x)



Revisiting Gradient Descent: SGD and its variants (g = 0)
GD

xt=x—7>"7,VFi(x)



Revisiting Gradient Descent: SGD and its variants (g = 0)
GD

xt =x—7Y1, VFi(x)

SGD and variants
Uniformly at random select j
xt =x—7VIF(x)
» SGD: randomly choose j,
V/F(x) = nVFj(x)

nonconvergence for fixed 7, "slow” convergence for carefully
decreasing T Robbins and Monro '51



Revisiting Gradient Descent: SGD and its variants (g = 0)
GD

xt =x—7Y1, VFi(x)

SGD and variants
Uniformly at random select j
xT =x—7VIF(x)
» SGD: randomly choose j,
@jF(X) = nVFj(x)
nonconvergence for fixed 7, "slow” convergence for carefully
decreasing T Robbins and Monro '51
» SAGA/SVRG: randomly choose j,
VIF(x) = n(VFi(x) - G)+G

G historic gradient, G; historic stochastic gradient Defazio et al.
'14, Johnsen and Zhang '13, SAGA converges for 7 < 1/(3nLmax)



Revisiting Gradient Descent: SGD and its variants (g = 0)
GD

xt =x—7Y1, VFi(x)

SGD and variants
Uniformly at random select j
xt =x—7VIF(x)
» SGD: randomly choose j,
V/F(x) = nVFj(x)

nonconvergence for fixed 7, "slow” convergence for carefully
decreasing T Robbins and Monro '51
» SAGA/SVRG: randomly choose j,

VIF(x) = n(VF(x) — G) + G

G historic gradient, G; historic stochastic gradient Defazio et al.
'14, Johnsen and Zhang '13, SAGA converges for 7 < 1/(3nLmax)
» Similar algorithms for proximal point Bianchi '16, Traore et al. 23



Revisiting PDHG




Revisiting PDHG
PDHG:
xt = prox, (x — TA*y)
xt +0(xT —x)

X =
y T = prox, ¢+ (y + 0 AX)
PDHG (dual extrapolation):
Yyt = prox,e(y + 0Ax)
y=y +0"-y)
xt = prox, . (x — TA*Y)



Revisiting PDHG
PDHG:
xt = prox, (x — TA*y)
X =xT+0(xT —x)
¥ = proxgs-(y + 0AX)

PDHG (dual extrapolation):
yT = prox, ¢+ (y + 0 Ax)
y=yt+0(y"—y)
xt = prox, . (x — TA*Y)

PDHG (dual extrapolation with f =" f}):
y,.‘*' = prox,e(yi + 0Aix), i=1,...,n
x+_prox ( TE, LAty )



From PDHG to SPDHG
PDHG (dual extrapolation with f =" f;):
yim = prox e (yi + 0Aix), i=1,....n
)7,-:y,-++0(yl-+—y,-), i=1,...,n
xt = prOXTg(X o TE?:I A;kyl)



From PDHG to SPDHG
PDHG (dual extrapolation with f =" f;):
yim = prox e (yi + 0Aix), i=1,....n
)7,-:y,-++0(yi+—y;), i=1,...,n
xt = prOXTg(X o TZ?:I A;ky/l)

Stochastic PDHG (SPDHG): Chambolle, Ehrhardt, Richtarik,
Schénlieb '18

Uniform at randomly select j
}/,-+ = ProX £ (}/i aF (TAIX)7 =
Vi=y +0nly —vi), i=ji ¥i=yielse
Xt = prox, (x — 7311 ATYi)
> convergence for o7 < 1/(nmax; ||A;|?), 8 =1

Chambolle, Ehrhardt, Richtarik, Schonlieb '18, Gutiérrez, Delplancke, Ehrhardt
'21, Alacaoglu, Fercoq, Cevher '22



SPDHG as SAGA

SPDHG: Chambolle, Ehrhardt, Richtérik, Schonlieb '18
Uniform at randomly select j
yl.+ = Prox,f= (yi+0Aix), i=j
Vi=yi +0n(y" —y), i=ji ¥;=yielse
xT = prox, o (x — > ATY;)



SPDHG as SAGA

SPDHG: Chambolle, Ehrhardt, Richtdrik, Schénlieb '18
Uniform at randomly select j
yt = proxXgee(yi + 0Aix), i=]j
Vi=yi +0nly" —y), i=ji ¥;=yielse
xT = prox, o (x — > ATY;)

SPDHG as SAGA (new):

Uniform at randomly select j

yl.+ = proxafi*(yi aF UA,'X), =

Vi = 1+ 0n)A5(y;" = y) + Xi Alyi
(x — V)

xt = prox,,

> essentially SAGA version of SPDHG
» for 0 = 1, step size bound 7 < 1/(nmax; ||A;||?) 3x larger



Numerical Results



Subsets / minibatching

Forward Operator: K : X — R®

S
min $ > " ||Kjx — by|* + M| Dx|l1 + 24.(x) ‘
j=1

Choose subsets S;

Ai = (Kj)jes, : X — RIS

fi(y) = Ejes, [1Kjx = bj|?

n depends on the size of the subsets S;
g(x) = Al[Dx]|1 +24(x)

min {Z fi(Aix) + g(X)}

i=1

vVvyYVYyyvyy



PET: Sanity Check, Convergence to Saddle Point (TV)

S
A

saddle point (5000 iter PDHG)

€3

SPDHG (20 epochs, 252 subsets)




PET: Faster than PDHG, TV, 20 epochs

PDHG

SPDHG (252 subsets)




PET: Faster than PDHG, TV, 5 epochs

PDHG

SPDHG (252 subsets)




PET: Faster than PDHG, TV, 1 epochs

PDHG

SPDHG (252 subsets)




PET: More subsets are faster
n=1,21,100,252

PDHG SPDHG (21 subsets) ~ —#— SPDHG (100)  —e— SPDHG (252)
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epochs = expected number of forward projections

Ehrhardt, Markiewicz, Schonlieb '19



Step-size condition of SPDHG

o7 < 1/(nmax || Ai[]2)

» Is a large-product o7 good? Empirically yes



Step-size condition of SPDHG

o7 < 1/(nmax || Ai[]2)

P Is a large-product o7 good? Empirically yes

» s upper bound tight? No, e.g. for PDHG o7||A||?> < 4/3 is
possible Ma et al. '23 (and in fact optimal). Empirically observed
for SPDHG, €.8. Schramm and Holler '22



Step-size condition of SPDHG

o1 < 1/(nmax HA,-HZ)

» Is a large-product o7 good? Empirically yes

» s upper bound tight? No, e.g. for PDHG o7||A||?> < 4/3 is
possible Ma et al. '23 (and in fact optimal). Empirically observed
for SPDHG, €.8. Schramm and Holler '22

» Is the ratio o/7 important? Yes Delplancke et al. '20
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(a) synthetic data (b) real data



Step-size condition of SPDHG

o1 < 1/(nmax HA,-HZ)

» Is a large-product o7 good? Empirically yes

» s upper bound tight? No, e.g. for PDHG o7||A||?> < 4/3 is
possible Ma et al. '23 (and in fact optimal). Empirically observed
for SPDHG, €.8. Schramm and Holler '22

» Is the ratio o/7 important? Yes Delplancke et al. '20
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(a) synthetic data (b) real data

» How to choose the ratio o/7? Open question



Adaptive step-sizes
P Idea: let o and 7 vary with iterations
> PDHG: a bit of theory 4+ emprical results Goldstein et al. '15
» SPDHG: empirical results for MP| Zdun and Brandt '21



Adaptive step-sizes
P Idea: let o and 7 vary with iterations
> PDHG: a bit of theory 4+ emprical results Goldstein et al. '15
» SPDHG: empirical results for MP| Zdun and Brandt '21
» SPDHG: theory + numerics for CT Chambolle, Ehrhardt et al. '24

2 10°

i e SPDHG = SPDHG

o ~——— A-SPDHG (a) ° = A-SPDHG (a)

@ 10% A-SPDHG (b) E] A-SPDHG (b)

o o ‘

5 e |

@D 2

] f g |l

3 £ |

® 4 o] \

>

£ 10¢ \o_ )

& 0 500 1000 1500 0 50 100 150
#lteration #Epoch

.% . 10°

o« W »-|—SPDHG = SPDHG

o ——ASPDHG@)| o = A-SPDHG (a)

F A-SPDHG (b) 3 A-SPDHG (b)

a s

2 3

n 2

® ©

=1 D

a =

@ [e]

E ol

& 108 -

& 0 500 1000 1500 0 50 100 150

#lteration #Epoch



CT: 10 epochs Enrhardt, Kereta, Liang, Tang '24




CT: 3 epochs Enrhardt, Kereta, Liang, Tang 24




CT: 1 epoch Enrhardt, Kereta, Liang, Tang '24




CT: Quantitative Comparison

0 20 40 60 80 1
#data passes

Ehrhardt, Kereta, Liang, Tang '24



CT: Quantitative Comparison, Noise

O(x) - d(x")

D(x) - d(x")

1
0 5 10 15 20 25 30 35 4

5 10 15 20 25 30 35 40

#data passes

high noise

medium noise (shown)

0 5

m
0 15 20
#data passes

#data passes

low noise

» Speed seems to depend on noise in the data

» Gradient based methods more effected

Ehrhardt, Kereta, Liang, Tang '24



CT: Random v Deterministic

—— SAGA
—— IAGA Herman-Meyer

D(x) —D(x")

10 20 30 40 50
#data passes

30 subsets

» similar convergence for 30 subsets (similar to literature)

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24



CT: Random v Deterministic

D(x) —D(x")

—— SAGA
—— IAGA Herman-Meyer

—— SAGA
—— |AGA Herman-Meyer

T

10 20 30 40
#data passes

30 subsets

10 20 30 40 5
#data passes

240 subsets

» similar convergence for 30 subsets (similar to literature)

> big difference for 240 subsets

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24



Conclusions and Outlook

Conclusions:

» Zoo of stochastic algorithms exists (gets
larger and larger)

» Randomness seems important in general deterministic
and not just mathematical convenience (

» Speeds up reconstruction of inverse
problems; e.g. PET, listmode PET
(randomize over events), CT, parallel MR,
motion-corrected CT, magnetic particle randgmized
imaging '

Future directions:

» Tighter analysis
» Inverse problems specific analysis

P Learned algorithms



