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Main Aim and Outline

x ♯ ∈ argmin
x

{
n∑

i=1

fi (Aix) + g(x)

}

▶ proper, convex and lower semi-continuous

▶ n large and/or Aix expensive

Outline:

1) Why? Inverse Problems and Optimization

2) How? Randomized Algorithms for Convex Optimization

3) So what? Applications: PET, CT, . . .



CT Reconstruction with TV

Total variation (TV)
Rudin, Osher, Fatemi ’92

R(x) = ∥Dx∥1
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min
x


s∑

j=1

∥Kjx − bj∥2 + λ∥Dx∥1 + ı+(x)


min
x

{
n∑

i=1

fi (Aix) + g(x)

} n = s
fi (y) = ∥y − bi∥2 i ∈ [n]
Ai = Ki i ∈ [n]
g(x) = λ∥Dx∥1 + ı+(x)



Motion corrected CT reconstruction

min
x

{
s∑

i=1

∥KMix − bi∥2 +R(x)

}
▶ Mi motion transformation

▶ here s = 10 motion gates; computations are a bottleneck

▶ No motion correction: Mi = I

1st state last state no MC

e.g. Delplancke, Thielemans, Ehrhardt ’21



Parallel MRI

min
x

{
s∑

i=1

∥SFCix − bi∥2 +R(x)

}
▶ Ci sensitivity map for ith MR coil, s = 12

Pruessmann et al. ’99



Stochastic Optimisation Algorithms



Building blocks for Convex Optimisation
Template:

min
x

{f (Ax) + g(x) = F (x) + g(x)}

▶ Ingredient 1 (gradient descent)

x+ = x − τ∇F (x)

▶ Ingredient 2 (proximal point algorithm)

x+ = proxτg (x) = argmin
z

{
1

2
∥z − x∥2 + τg(z)

}
▶ Ingredient 3 (conjugation)

if f is prox-friendly, but f ◦ A is not: split f and A
f (Ax) = f ∗∗(Ax) = supy{⟨Ax , y⟩ − f ∗(x)}

Dual: miny {f ∗(y) + g∗(−A∗y)}
Primal-Dual: minx maxy {⟨Ax , y⟩ − f ∗(y) + g(x)}



Building Algorithms

Template: minx {f (Ax) + g(x) = F (x) + g(x)}

New algorithms are designed by mix-and-match:

Proximal Gradient Descent: Combettes and Wajs ’05

x+ = proxτg (x − τ∇F (x))

Primal-Dual Hybrid Gradient Chambolle and Pock ’11

x+ = proxτg (x − τA∗y)

x = x + θ(x+ − x)

y+ = proxσf ∗(y + σAx)



Revisiting Gradient Descent: SGD and its variants (g = 0)
GD

x+ = x − τ∇F (x)

SGD and variants

Uniformly at random select j

x+ = x − τ∇̃jF (x)

▶ SGD: randomly choose j ,

∇̃jF (x) = n∇Fj(x)

nonconvergence for fixed τ , ”slow” convergence for carefully
decreasing τ Robbins and Monro ’51

▶ SAGA/SVRG: randomly choose j ,

∇̃jF (x) = n(∇Fj(x)− Gj) + G

G historic gradient, Gj historic stochastic gradient Defazio et al.

’14, Johnsen and Zhang ’13, SAGA converges for τ ≤ 1/(3nLmax)
▶ Similar algorithms for proximal point Bianchi ’16, Traore et al. ’23
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Revisiting PDHG
PDHG:

x+ = proxτg (x − τA∗y)

x = x+ + θ(x+ − x)

y+ = proxσf ∗(y + σAx)

PDHG (dual extrapolation):

y+ = proxσf ∗(y + σAx)

y = y+ + θ(y+ − y)

x+ = proxτg (x − τA∗y)

PDHG (dual extrapolation with f =
∑

i fi):

y+i = proxσf ∗i (yi + σAix), i = 1, . . . , n

y i = y+i + θ(y+i − yi ), i = 1, . . . , n

x+ = proxτg (x − τ
∑n

i=1 A
∗
i y i )
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From PDHG to SPDHG
PDHG (dual extrapolation with f =

∑
i fi):

y+i = proxσf ∗i (yi + σAix), i = 1, . . . , n

y i = y+i + θ(y+i − yi ), i = 1, . . . , n

x+ = proxτg (x − τ
∑n

i=1 A
∗
i y i )

Stochastic PDHG (SPDHG): Chambolle, Ehrhardt, Richtárik,

Schönlieb ’18

Uniform at randomly select j

y+i = proxσf ∗i (yi + σAix), i = j

y i = y+i + θn(y+i − yi ), i = j ; y i = yi else

x+ = proxτg (x − τ
∑n

i=1 A
∗
i y i )

▶ convergence for στ < 1/(nmaxi ∥Ai∥2), θ = 1
Chambolle, Ehrhardt, Richtárik, Schönlieb ’18, Gutiérrez, Delplancke, Ehrhardt

’21, Alacaoglu, Fercoq, Cevher ’22
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SPDHG as SAGA
SPDHG: Chambolle, Ehrhardt, Richtárik, Schönlieb ’18
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j (y
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j − yj) +

∑n
i=1 A

∗
i yi

x+ = proxτg (x − τ∇̃j)

▶ essentially SAGA version of SPDHG

▶ for σ = 1, step size bound τ < 1/(nmaxi ∥Ai∥2) 3× larger
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Numerical Results



Subsets / minibatching

Forward Operator: K : X → Rs

min
x


s∑

j=1

∥Kjx − bj∥2 + λ∥Dx∥1 + ı+(x)


▶ Choose subsets Si
▶ Ai = (Kj)j∈Si : X → R|Si |

▶ fi (y) =
∑

j∈Si ∥Kjx − bj∥2

▶ n depends on the size of the subsets Si
▶ g(x) = λ∥Dx∥1 + ı+(x)

min
x

{
n∑

i=1

fi (Aix) + g(x)

}



PET: Sanity Check, Convergence to Saddle Point (TV)

saddle point (5000 iter PDHG)

SPDHG (20 epochs, 252 subsets)

Ehrhardt, Markiewicz, Schönlieb ’19



PET: Faster than PDHG, TV, 20 epochs

PDHG

SPDHG (252 subsets)

Ehrhardt, Markiewicz, Schönlieb ’19



PET: Faster than PDHG, TV, 5 epochs

PDHG

SPDHG (252 subsets)

Ehrhardt, Markiewicz, Schönlieb ’19



PET: Faster than PDHG, TV, 1 epochs

PDHG

SPDHG (252 subsets)

Ehrhardt, Markiewicz, Schönlieb ’19



PET: More subsets are faster

n = 1, 21, 100, 252

Ehrhardt, Markiewicz, Schönlieb ’19



Step-size condition of SPDHG

στ < 1/(nmax
i

∥Ai∥2)

▶ Is a large-product στ good? Empirically yes

▶ Is upper bound tight? No, e.g. for PDHG στ∥A∥2 < 4/3 is
possible Ma et al. ’23 (and in fact optimal). Empirically observed
for SPDHG, e.g. Schramm and Holler ’22

▶ Is the ratio σ/τ important? Yes Delplancke et al. ’20

▶ How to choose the ratio σ/τ? Open question
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Adaptive step-sizes
▶ Idea: let σ and τ vary with iterations
▶ PDHG: a bit of theory + emprical results Goldstein et al. ’15

▶ SPDHG: empirical results for MPI Zdun and Brandt ’21

▶ SPDHG: theory + numerics for CT Chambolle, Ehrhardt et al. ’24
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CT: 10 epochs Ehrhardt, Kereta, Liang, Tang ’241 data pass 3 data passes 5 data passes 10 data passes x *1 data pass 3 data passes 5 data passes 10 data passes x *
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SAGA SPDHG



CT: 3 epochs Ehrhardt, Kereta, Liang, Tang ’241 data pass 3 data passes 5 data passes 10 data passes x *1 data pass 3 data passes 5 data passes 10 data passes x *

target SGD
1 data pass 3 data passes 5 data passes 10 data passes x *1 data pass 3 data passes 5 data passes 10 data passes x *

SAGA SPDHG



CT: 1 epoch Ehrhardt, Kereta, Liang, Tang ’241 data pass 3 data passes 5 data passes 10 data passes x * 1 data pass 3 data passes 5 data passes 10 data passes x *
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CT: Quantitative Comparison

0 20 40 60 80 100
#data passes

10 2

10 1

100

101

102

103

104

(x
)

(x
* )

PGD
SGD
PDHG

SAGA
SVRG
SPDHG

Ehrhardt, Kereta, Liang, Tang ’24



CT: Quantitative Comparison, Noise
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▶ Speed seems to depend on noise in the data

▶ Gradient based methods more effected

Ehrhardt, Kereta, Liang, Tang ’24



CT: Random v Deterministic
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Conclusions and Outlook

Conclusions:

▶ Zoo of stochastic algorithms exists (gets
larger and larger)

▶ Randomness seems important in general
and not just mathematical convenience

▶ Speeds up reconstruction of inverse
problems; e.g. PET, listmode PET
(randomize over events), CT, parallel MRI,
motion-corrected CT, magnetic particle
imaging

Future directions:

▶ Tighter analysis

▶ Inverse problems specific analysis

▶ Learned algorithms

deterministic

randomized


