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ABSTRACT 
The accurate classification of psychophysiological data is 
an important determinant of the quality when interacting 
with a physiological computing system. Previous research 
has focused on classification accuracy of 
psychophysiological data in purely mathematical terms but 
little is known about how accuracy metrics relate to users’ 
perceptions of accuracy during real-time interaction.  A 
group of 14 participants watched a series of movie trailers 
and were asked to subjectively indicate their level of 
interest in a binary high/low fashion. Psychophysiological 
data (EEG, ECG and SCL) were used to create a binary 
classification of interest via a Support Vector Machine 
(SVM) algorithm. After a period of training, participants 
received real-time feedback from the classification 
algorithm and perceptions of accuracy were assessed.  The 
purpose of the study was to compare mathematical 
classification accuracy with the perceived accuracy of the 
system as experienced by the users.  Results indicated that 
perceived accuracy was subject to a number of 
psychological biases resulting from expectations, 
entrainment and development of trust.  The F1 score was 
generally a significant predictor of perceived accuracy.  
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INTRODUCTION 
Psychophysiological data can be collected implicitly during 
human-computer interaction and used to represent the 
affective or cognitive state of the person.  This dynamic and 
quantified representation of the user represents a basis for 
adaptive software mechanics.  The same logic can be 
applied to the derivation of media tags during the passive 
consumption of movies, music or still images.  In this case, 
psychophysiological data is collected and classified as the 
person experiences the media, which are subsequently 
classified to yield tags related to emotional experience [1].  
This form of implicit human-centred tagging [2] provides a 
method for understanding human behavior and the effects 
of media on the user – as well as enabling a number of 
interactive media applications, such as interactive narratives 
tailored to induce a specific psychological state in the 
viewer [3]. This type of implicit interaction represents a 
form of physiological computing [4] constructed upon a 
generic control loop [5]. 

Physiological computing as implicit interaction 

Research on human-centred tagging of media has focused 
on the measurement of emotional states [6], which may be 
categorized as discrete states (happy, angry, calm etc.) or 
within the two-dimensional space of the circumplex model 
[7]. The generation of affective tags provides a useful 
means to: (1) assess whether media produced the intended 
emotional state, and (2) to assemble a repertoire of media 
over a period of time known to induce specific emotional 
states in that particular individual.  The former represents a 
‘test audience’ usage case where automated 
psychophysiological quantification effectively replaces 
subjective self-report.  The second instance emphasizes the 
construction of personalised database (of media clips) via 
human-centred tagging that may be utilized to elicit 
desirable emotional states and mitigate undesirable ones, 
e.g. affective music player [8].  Recent work in the domain 
of cultural heritage [9] departed from this tradition by 
measuring a psychological state of interest as a cognitive-
affective state.  In this example, measures from EEG and 
autonomic psychophysiology were combined to 
operationalize the degree of interest elicited by exposure to 
media.  Interest is defined as a combination of: (1) 
attention, (2) stimulation and (3) high levels of either 
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positive or negative emotion.  Tagging media with respect 
to items that elicit high interest can be used to create 
personalised and engaging trajectory through any 
information space [10].  This approach is concerned with 
the classification of magnitude along a single psychological 
dimension (high vs. low levels of interest) as opposed to the 
categorization of discrete emotional states. 

Classification accuracy 

Current research on the classification of 
psychophysiological data places enormous emphasis on the 
application of machine learning algorithms in this context 
[11].  The general methodology for the construction of a 
classifier is to generate a training set, which is subsequently 
used to train a classifier and represents a template for all 
subsequent acts of categorisation.  The first obstacle for 
classification is the derivation of an optimal set of training 
data. It is hoped that training data provides a good mapping 
in terms of a quantitative discrimination (between the states 
to be classified) and lead to a reduction of classification 
errors. Those factors most likely to actively contribute to 
classification errors are: 

1. The influence of noise from non-psychological 
sources, noise is a ‘fact of life’ for ambulatory 
psychophysiology  

2. The degree of divergence between the estimated 
mapping provided by the training set and the best 
mapping possible.  This factor is determined by 
the representativeness of the training set. The 
degree of divergence between what is measured by 
the system now and what was measured during 
training is called Bias. 

3. The sensitivity of the classifier to the training set.  
It is important to note that different approaches to 
signal classification differ with respect to their 
susceptibility to specific and idiosyncratic qualities 
of the training dataset.  The degree of sensitivity to 
the training set exhibited by the classifier is called 
Variance. 

Therefore, a good dataset for training may be defined as 
one that encompasses the full range of physiological 
responses for classification and has been acquired under 
realistic conditions.  The acquisition of such a dataset often 
requires a sustained period of monitoring and a cumulative 
approach to data collection, i.e. training dataset becomes 
more inclusive as data is acquired over time/episodes of 
usage. The accumulation of training data over a period of 
time should reduce bias and variance as the resulting data 
that informs the process of classification is both 
representative and generalizable [12]. 

Perceived accuracy & user experience 

The quality of the classification emerging from the training 
dataset is generally assessed using ‘hard’ markers of 
mathematical accuracy, e.g. cross-validation.  It is assumed 

that accurate classification as represented by a 
mathematical index will translate into good performance 
with respect to the categorization of psychological states 
within the context of human-computer interaction.  This 
assumption disregards the obvious fact that users of 
physiological computing systems will possess varying 
degrees of subjective self-awareness.  The co-existence of 
‘hard’ markers of classification accuracy (from the system) 
and ‘soft’ markers of subjective self-awareness is 
characteristic of interactions with physiological computing 
systems.  The combination of ‘hard’ and ‘soft’ markers of 
classification accuracy yields a third category of accuracy – 
which equates to the perceived accuracy of the system from 
the perspective of the user (see [4] for a more detailed 
discussion).  

The perceived accuracy of the classification engine is an 
important determinant of the user experience.  A system 
that is perceived to be accurate in the short-term will create 
a positive impression that encourages further use.  In the 
long-term, an acceptable level of perceived accuracy will 
engender trust in the technology [13]. The question of what 
is an acceptable level of accuracy for a physiological 
computing system has been addressed by previous research 
[14,15].  These authors simulated various levels of accuracy 
with respect to control of an input device and task difficulty 
respectively in order to explore levels of user acceptance 
and tolerance for system error. 

Current study 

The current paper will focus on the relationship between 
perceived classification accuracy and mathematical 
accuracy of a physiological computing prototype working 
in real-time.  A system was designed to make a binary 
(high/low) classification of the interest level experienced by 
the user during the viewing of 40 movie trailers.  Data from 
EEG, ECG and skin conductance level were collected, 
quantified and classified in real-time.  Classification of 
psychophysiological data was achieved using a Support 
Vector Machine (SVM) working on a subject-dependent 
basis, i.e. a SVM was generated that was specific to each 
individual participant.   

The training dataset used to generate the SVM classifier 
was obtained at four different points in time as each 
participant viewed the series of movie trailers.  The initial 
system build for classification was achieved on the basis of 
a small dataset whereas the final system build utilized a 
significantly larger training dataset for classification.  Four 
system builds are included in the experimental design in 
order to explore how the acquisition of training data 
influences both ‘hard’ and ‘soft’ markers of classification 
accuracy.   

At the end of each movie trailer, the participant was 
required to provide a subjective binary estimate of interest 
and subsequently received feedback on the classification of 
interest produced by the system.   
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The purpose of this paper is to assess users’ perceptions of 
psychophysiological classification based upon real-time 
feedback within the context of an interaction with a 
working system.  We also wished to explore the feasibility 
of subject-dependent classification where the classification 
algorithm for psychophysiological data is trained to each 
user following a brief period of initial exposure.  The focus 
of current research in this field is on ‘hard’ mathematical 
markers of classification accuracy that are often derived on 
a retrospective basis [11].  Our contribution is to study the 
association between these ‘hard’ markers and the 
perception of accuracy from users who have received 
explicit feedback from the system during a real-time 
interaction.   

The study was designed to explore four research questions: 

1. How does the accumulation of training data 
influence both mathematical classification 
accuracy and perceived classification accuracy?  It 
is assumed that both estimates of classification 
will improve over each successive build of the 
system (due to the cumulative acquisition of 
training data and an associated reduction of 
variance and bias in the training set)  

2. How do user perceptions of accuracy change with 
sustained exposure to the system?  Is there 
evidence for any systematic bias? 

3. For subject-dependent classification of 
psychophysiology in real-time, how long is 
required for a system to generate a sufficient 
corpus of data to train a classifier?   

4. What is the relationship between mathematical 
accuracy and perceived accuracy?  Do users tend 
to over- or under-estimate classification accuracy? 

SYSTEM DESCRIPTION 
Conceptual Model 

The conceptual model for the system used in the study is 
illustrated in Figure 1.  Four types of measure are collected 
from the participant, each one maps onto three process sub-
components, which are forwarded to the classification 
engine in order to categorise the level of interest as high or 
low.   The concept of interest is divided into three types of 
process: (1) activation, i.e. does the content stimulate the 
autonomic nervous system? (2) cognition, i.e. does the 
content engage novel problem-solving and consolidate 
memory formation in the rostral prefrontal cortex of the 
brain, and (3) valence, i.e. does the content provoke a 
strong positive or negative emotional response (see [10] for 
a detailed description of how the concept of interest and 
associated measures were derived).  If psychophysiological 
data indicates that content is stimulating, cognitively 
engaging and emotionally provocative, it is deemed to be of 
interest to the user.  The activation processor is indexed by 
autonomic indicators, such as heart rate (HR) and skin 

conductance level (SCL).   The level of electrocortical 
activation from the EEG signal over the rostral prefrontal 
cortex [16] was used as a measure of cognition.  Valence 
was represented by frontal EEG asymmetry [17].   

Measures from the physiological sensors were forwarded to 
the component processors.  These features were used as 
inputs to the classification engine in the composite model 
that expressed interest as a binary (high/low) state.  The 
output from the classification represents a control input for 
a hypothetical process of software adaptation.  

Real-time interest classification  

A data processing pipeline was designed to: (1) extract the 
relevant psychophysiological features, (2) quantify each 
category of psychophysiological response, (3) classify the 
response as a binary state of interest and label this response.  
Because the system works in real-time on a subject-
dependent basis, an initial exposure of the participant to 
video clips was used to train the first build of the SVM 
classifier.  The classifier was re-trained on a new data set 
three times after this initial build, e.g. every 7-9 movie 
trailers, in order to deliver a steady accumulation of the 
training dataset.  

  

 
Figure 1. System Model 

Due to the complexity of the application framework two 
elements have been extracting from the overall structure to 
highlight how they functioned within the application. The 
first element took the form of a video player sub-window, 
which also acted as the means for gathering and processing 
the subjective responses to each 60sec video after viewing.  
Execution of the video player function drew a clip from the 
pool of video material.  After the video had been displayed 
a new window appeared to prompt the user to deliver a 
subjective response (high/low interest). These responses 
were processed and forwarded to the export module for 
association with psychophysiological responses for that 
particular video. 
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The second element received feature vector output from the 
data export process and checked whether it was necessary 
to construct a new version of the classifier.  If true, a check 
was performed to determine if the current request 
corresponded with the first build of the classifier.  If this 
condition was satisfied, a further check was performed to 
determine whether two instances of both classes (i.e. two 
examples of high and low class data) existed within the 
training dataset. If true, a classifier was constructed. 
However, if a classifier already existed and a new classifier 
build was required, then data collected for the current 
stimulus period (i.e. corresponding to approx. 10 movie 
trailers) was added to the existing training set and a new 
classifier was constructed based upon this aggregated 
dataset. If no new classifier build was required, the train 
classifier process was bypassed and new vectors were 
classified and output.  

Data acquisition 

Psychophysiological data was imported in real-time from 
two ambulatory physiological sensor technologies: the 
Nexus X MkII © (used to capture autonomic ECG and SCL 
responses) and the Enobio © (used to capture EEG 
responses). These data were buffered internally and the 
process pipeline split into two top-level protocols to process 
autonomic data and EEG data respectively.  

Physiological responses from the autonomic system were 
measured using the Electrocardiogram (ECG, sampled from 
the torso) and SCL (distal phalanges, second and forth 
finger, non-dominant hand).  Both channels were sampled 
at 512Hz. Three channels of electroencephalographic 
(EEG) data were recorded, measuring alpha (8-12Hz) and 
beta (13-30Hz) activity, using the Enobio wireless 3-
channel sensor (sampled at 250Hz) with ground contacts on 
left ear lobe and inner ear (Starlabs Inc). A mobile sensor 
forehead band was fitted and nasion aligned to ensure 
sensor placement at Fp1, Fp2, Fpz and electrodes attached. 

The autonomic data processor included filtering for both 
electrocardiogram (ECG) and skin conductance level (SCL) 
of a 0.5 to 35Hz bandpass and 35Hz lowpass respectively. 
The ECG data was subsequently forwarded to a beat 
detection process in order to determine the mean and 
standard deviation of the inter-beat-interval (IBI). The 
filtered SCL data was forwarded to the epoch analysis 
module to produce the mean and standard deviation of SCL. 
The resulting derivatives from ECG and SCL were 
forwarded to a feature store for eventual output. 

Data analysis 

The EEG data processor performed filtering (Bandpass 
0.05-35Hz) and epoch analysis on three channels of EEG 
activity derived from Fp1, Fp2 and Fpz.  These data were 
subjected to a Fast Fourier Transform (FFT) analysis to 
determine the total amplitude spectra of the signal in the 
alpha and beta bandwidths.  Data from the FFT were 
forwarded to calculate cognition and valence. The former 

was expressed as a ratio of electrocortical activation (β /α) 
at sites Fp1, Fp2, and FPz.  Valence was represented by 
frontal EEG asymmetry, which is expressed as the 
difference between the natural logs (ln) of the total power in 
the alpha band of the right and left hemispheres. The 
resulting eight derivatives (see Table 1) are forwarded to 
the feature store and exported to the train classifier process 

Measure Signal Derivatives for Classification 

Heart Rate 
IBI (mean) 
IBI (s.d.) 

Skin Conductance SCL (mean) 

EEG 

Ratio β /α (Fp1) 
Ratio β /α (Fp2) 
Ratio β /α (Fpz) 

 ln(αFP2)-ln(αFP1)   
Table 1. A list of measures and those signal derivatives 

used as input to the classification algorithm. 

All derivatives were extracted from a 60 second epoch (i.e. 
duration of each movie trailer) to deliver a total of 40 
stimulus events. For autonomic measures features were 
captured using a 12sec data window with a moving window 
of 6sec. For EEG, features are captured using a 12sec of 
data with moving 6sec window. This approach was used to 
construct a feature vector every 6sec resulting in 10 -1 (due 
to the overlapping data 12 second data windows) per sixty 
seconds stimulus epoch. This approach delivered a potential 
of 360 – (n * 9) classification vectors, where n equals the 
total number of vectors used to train the classifier initially. 

Classification 

The training of the classifier occurred within MatLab using 
the deployment command line processor for real-time data 
interaction 

To train and ascertain estimated performance of the 
classifier in real-time, the sequential minimal optimisation 
[18] and hold-out cross-validation methods are used on the 
aggregated training data. The hold-out cross-validation 
method partitions the data into two parts, by randomly 
assigning data to either training or testing sets, ensuring that 
the classifier is trained and tested with novel data and is 
analogous to a real world task. This method of cross-
validation has been shown to provide a more accurate 
assessment of potential classifier performance in 
comparison to k-fold cross-validation when applied to small 
datasets, such as those gained from real-time applications 
[19]. When coupled with a loose grid search algorithm, 
these methods form the basis for the training and 
parameterisation of the SVM in real-time, providing the 
optimal settings for the box constraint and sigma values of 
the SVM radial basis function (RBF) kernel for each new 
instance of training data as the system is used. That is, for 
each new build of the system, training data is aggregated 
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and cross-validated to create a new classifier in real-time, in 
this instance to prevent over fitting of the classifier to the 
training data and reduce computation time the box 
constraint and sigma values are set to a maximum of 2. 

Using this approach a feature vector was constructed every 
6 seconds resulting in 10 -1 (due to the overlapping data 12 
second data windows) classification vectors per sixty 
second stimulus epoch. This gave a potential of 360 – (n * 
9) classification vectors, where n equals the total number of 
vectors used to train the classifier initially. Thus, nine 
classifications were performed in real-time per stimulus 
epoch and a majority vote was performed between class 
outputs at the end of each epoch to determine the resulting 
class for that epoch. 

METHODOLOGY 
Participants 
16 participants (9 female) aged 19-25yrs. took part in the 
experiment. However, only 14 participants data were used 
for analysis.  Data from two participants were excluded 
because their responses did not meet a criterion that was 
required to train a classifier on four occasions. Specifically, 
these two participants did not produce the required 
instances of high and low classes over the maximum 10 
videos needed to train the system (i.e. the number of videos 
remaining in the database was insufficient to permit three 
further iterations of the classifier). All procedures and 
measures were approved by the University Research Ethics 
Committee prior to data collection. 

Experimental design 
The experiment was designed as a repeated measures study 
(i.e. the same participants took part in all build sessions). A 
“Wizard of Oz” [20] prototyping approach was derived in 
order to convey feedback to the user in real-time. The 
application included four build phases over the course of 
the experiment designed to investigate how the 
accumulation of data into the training set influenced 
classification accuracy: 

x build 1 was the initial classifier training phase and 
required responses from at least two of each of the 
target classes (high and low) 

x build 2 aggregated the database of responses from 
build 1 into a new training data set and the SVM 
was re-built 

x build 3 aggregated the responses from builds 1 and 
2 into a new training data set and the SVM was re-
built 

x build 4 aggregated the responses from the previous 
3 builds and into a new training data set and the 
SVM was re-built  

Materials 
The stimulus material took the form of movie video trailers 
from four genres of film: science fiction, comedy, action 

and horror. The presentation of each movie trailer lasted 60 
seconds; each genre contained 10 trailers. Videos were 
displayed on a 42” LCD TV screen at 720p resolution and 
audio was reproduced through television stereo speakers at 
an easy listening volume of 70 dB. Participants sat at an 
approximate distance of 1m directly in front of the 
television and within easy reach of a computer connected 
mouse. Video display and user interactions were captured 
using a computer with two display outputs; one screen 
output the video and subjective response collection 
application interface and the other displayed the classifier 
interface. The presentation order of the movie trailers was 
randomised for each participant, with each video 
presentation drawing from the pool of 40 until all material 
was exhausted.  

Procedure 
After receiving instruction about the experimental 
procedure, participants were required to provide written 
consent. Electrodes were placed on the torso for ECG and 
on the distal phalanges of second and forth finger of the 
non-dominant hand for SC. Participants were asked to sit 
comfortably but remain as still as possible.  

The experimental procedure was completed in two parts, 
initial training (build 1) and subsequent instances of 
classification/feedback.  During the build 1 mode a video 
trailer of 60 seconds duration randomly chosen from a pool 
of 40 was displayed to the participant. After each video, 
participants were shown a simple interface on screen that 
asked “was this content interesting? Yes/No.” Once 
feedback was received, another screen appeared to allow 
the next video in the sequence to be played (“Play next 
video? Yes/No”).  This procedure was repeated until the 
experimenter received a message indicating that a classifier 
was being constructed.  

Once a classifier had been constructed, the sequence of 
events was as follows: 

(1) participant views movie trailer 

(2) participant provides a subjective rating of whether 
the movie trailer was rated as high or low interest. 
This rating was added to the training dataset for 
subsequent builds of the classifier 

(3) The system provides feedback (high/low interest) 
to the experimenter for that item based on the 
current build of the classification algorithm 

(4) Feedback from the system is conveyed verbally to 
the participant by the experimenter. 

This mode of interaction continued during builds 2-4.   

The experimenter was the same person throughout the trial 
and it was made clear to the participants that he was simply 
a conduit to system feedback. 
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seven minutes of data collection.  This finding is encouraging 
with respect to designing a system upon a process of subject-
dependent classification where each algorithm is created 
dynamically for each user.   

The absence of any subsequent increase in mathematical 
accuracy could be a ‘ceiling effect’ i.e. the high level of 
accuracy accomplished during build one left little room for 
further improvement.  Alternatively the 40min duration of 
the experiment may have been insufficient to observe the 
effect of exposure/data collection on classification accuracy.  
Extending the period of exposure and size of the training 
dataset beyond the current experiment represents one avenue 
for further research. 

The perceived accuracy of the classification engine tended to 
fluctuate over the four builds (Figure 2). The statistical 
analysis support a view that perceived accuracy increased 
during the final build compared to builds 2 and 3. High level 
of perceived accuracy observed during build one could 
reflect a ‘halo effect’ due to the novelty of the system and the 
incorporation of technical apparatus, such as sensors. When 
participants progressed to the second build phase, perceived 
accuracy dropped by 9%, a trend that was mirrored by the F1 
score (Figure 2).  The decline of perceived accuracy during 
the second build may reflect how increased exposure to the 
system classification led to a less optimistic (and more 
accurate) appraisal of the capabilities of the technology.  This 
type of analytic understanding of a technical system informs 
the development of trust between user and technology [13].   

Factors influencing perception of system accuracy 

It is important to note that positive responses (high interest) 
were more frequent than those in the negative (low interest) 
category.  This is unsurprising given that our participants 
watched movie trailers, which are designed to pique the 
interest of the viewer.  However, this imbalance did bias the 
participant to perceive classification accuracy in terms of the 
more frequent (high interest) category.  If we consider the 
ratio of true (correct) to false (incorrect) responses in the 
positive category (Figure 3), participants experienced one 
incorrect response for every 9.3 classifications during the 
first build.  This was the highest accuracy recorded by 
participants and represented an initial positive bias.  This 
index fell to one error for every 3.3 classifications during the 
second build phase (Figure 3).  The proportion of incorrect 
responses in the positive/high interest category subsequently 
decreased during builds 3 (one error per 4.5 classification) 
and 4 (one error per 6.8 classifications).  Given that negative 
responses (low interest) were relatively infrequent, it is 
argued that the proportion of correct responses in the high 
interest category were largely responsible for driving the 
perceived classification accuracy. 

The number of classifications judged to be correct (in both 
high and low interest categories) significantly increased 
during the fourth and final build compared to builds 2 and 3.  
In addition, the correlation between mathematical scores of 

classification accuracy and perceived accuracy were positive 
and significant during final two builds of the system (Table 
2).  It can be argued that build four represented instances of 
classification based upon the largest training dataset, where 
bias and variance are both reduced, and convergence between 
mathematical and perceived measures of accuracy was a 
natural consequence of this factor.   

Alternatively, the presence of class imbalance within our 
classification system may have functioned as a form of 
implicit bias.  Participants learned that output from 
classification tended to favour the ‘high interest’ category, 
which represented a subtle mechanism of entrainment 
whereby participants tended to choose the positive category 
without conscious realization.  It is also possible that 
participants treated the experiment as a game where the goal 
was to correctly match their response with one produced by 
the system.  Hence, participants were predisposed towards 
the high interest category, which in turn leads to the creation 
of classification engine with an implicit bias towards this 
category - and repeated feedback from the system both 
reinforces and amplifies this bias towards the high interest 
category.  A final possibility is that participants tended 
towards agreement with the system classification during the 
fourth build due to fatigue accumulated during the test 
session.   

Methodological issues 

This issue of class bias with respect to binary classification 
presented a dilemma for assessment of the current system.  
The obvious solution is to create a balanced training set 
where both outcomes are equally likely but that can be 
problematic where bias is an inherent property within a 
database. Even if the classification system were initially 
trained using perfectly balanced data, bias would eventually 
creep into the classification engine when it was re-trained 
according to the preferences of the individual.  A systematic 
exploration of class bias using this type of subject-dependent 
classification based upon an incremental training dataset is 
one topic for further work.  The issue of bias due to feedback 
could be explored systematically by varying the protocol 
used in the current study.  For example, the results of each 
classification could be withheld from the participant and 
shared at the end of the experiment. 

The current study used a protocol where system feedback 
was conveyed to participants via the experimenter.  This 
form of feedback was selected due to the technical 
limitations of the system and was far from ideal.  The 
presentation of feedback at the interface is likely to exert a 
strong influence on the perception of accuracy.  The use of a 
human agent introduces an unwelcome level of 
‘experimenter bias’ into the experience of the participants. 

It was surprising that perceived accuracy and mathematical 
scores of accuracy were generally within 10% of one another 
(Table 2).  There was a general tendency for perceived 
accuracy to be higher than mathematical accuracy.  The study 
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does indicate that F1 score was generally a good predictor of 
perceived accuracy; it was significantly positively correlated 
with perceived accuracy in all but one of the four builds 
(Table 4).  The results of the correlation suggest that F1 score 
from a classification engine may provide a reasonable 
estimate of perceived accuracy from users but more research 
is required to support this claim. 

CONCLUSION 
The purpose of this study was to explore the relationship 
between mathematical and perceived classification accuracy 
using psychophysiological data in a real-time application.  It 
was found that mathematical accuracy remained stable 
throughout the experiment whilst perceived accuracy showed 
some fluctuation related to bias and developing expectations 
from the user.  The study indicated that perceived accuracy 
tended to be an over-estimation of mathematical accuracy 
(F1 score) but there was a high degree of positive correlation 
between F1 and perceived accuracy. 
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