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ABSTRACT INTRODUCTION

The accurate classification of psychophysiological data is
an important determinant of the quality when interacting
with a physiological computing system. Previous research
has  focused on  classification  accuracy  of
psychophysiological data in purely mathematical terms but
little is known about how accuracy metrics relate to users’
perceptions of accuracy during real-time interaction. A
group of 14 participants watched a series of movie trailers
and were asked to subjectively indicate their level of
interest in a binary high/low fashion. Psychophysiological
data (EEG, ECG and SCL) were used to create a binary
classification of interest via a Support Vector Machine
(SVM) algorithm. After a period of training, participants
received real-time feedback from the classification
algorithm and perceptions of accuracy were assessed. The
purpose of the study was to compare mathematical
classification accuracy with the perceived accuracy of the
system as experienced by the users. Results indicated that
perceived accuracy was subject to a number of
psychological biases resulting from expectations,
entrainment and development of trust. The F1 score was
generally a significant predictor of perceived accuracy.
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Psychophysiological data can be collected implicitly during
human-computer interaction and used to represent the
affective or cognitive state of the person. This dynamic and
quantified representation of the user represents a basis for
adaptive software mechanics. The same logic can be
applied to the derivation of media tags during the passive
consumption of movies, music or still images. In this case,
psychophysiological data is collected and classified as the
person experiences the media, which are subsequently
classified to yield tags related to emotional experience [1].
This form of implicit human-centred tagging [2] provides a
method for understanding human behavior and the effects
of media on the user — as well as enabling a number of
interactive media applications, such as interactive narratives
tailored to induce a specific psychological state in the
viewer [3]. This type of implicit interaction represents a
form of physiological computing [4] constructed upon a
generic control loop [5].

Physiological computing as implicit interaction

Research on human-centred tagging of media has focused
on the measurement of emotional states [6], which may be
categorized as discrete states (happy, angry, calm etc.) or
within the two-dimensional space of the circumplex model
[7]. The generation of affective tags provides a useful
means to: (1) assess whether media produced the intended
emotional state, and (2) to assemble a repertoire of media
over a period of time known to induce specific emotional
states in that particular individual. The former represents a
‘test audience’ usage case where  automated
psychophysiological quantification effectively replaces
subjective self-report. The second instance emphasizes the
construction of personalised database (of media clips) via
human-centred tagging that may be utilized to elicit
desirable emotional states and mitigate undesirable ones,
e.g. affective music player [8]. Recent work in the domain
of cultural heritage [9] departed from this tradition by
measuring a psychological state of interest as a cognitive-
affective state. In this example, measures from EEG and
autonomic  psychophysiology = were combined to
operationalize the degree of interest elicited by exposure to
media. Interest is defined as a combination of: (1)
attention, (2) stimulation and (3) high levels of either
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positive or negative emotion. Tagging media with respect
to items that elicit high interest can be used to create
personalised and engaging trajectory through any
information space [10]. This approach is concerned with
the classification of magnitude along a single psychological
dimension (high vs. low levels of interest) as opposed to the
categorization of discrete emotional states.

Classification accuracy

Current research on the classification of
psychophysiological data places enormous emphasis on the
application of machine learning algorithms in this context
[11]. The general methodology for the construction of a
classifier is to generate a training set, which is subsequently
used to train a classifier and represents a template for all
subsequent acts of categorisation. The first obstacle for
classification is the derivation of an optimal set of training
data. It is hoped that training data provides a good mapping
in terms of a quantitative discrimination (between the states
to be classified) and lead to a reduction of classification
errors. Those factors most likely to actively contribute to
classification errors are:

1. The influence of noise from non-psychological
sources, noise is a ‘fact of life’ for ambulatory
psychophysiology

2. The degree of divergence between the estimated
mapping provided by the training set and the best
mapping possible. This factor is determined by
the representativeness of the training set. The
degree of divergence between what is measured by
the system now and what was measured during
training is called Bias.

3. The sensitivity of the classifier to the training set.
It is important to note that different approaches to
signal classification differ with respect to their
susceptibility to specific and idiosyncratic qualities
of the training dataset. The degree of sensitivity to
the training set exhibited by the classifier is called
Variance.

Therefore, a good dataset for training may be defined as
one that encompasses the full range of physiological
responses for classification and has been acquired under
realistic conditions. The acquisition of such a dataset often
requires a sustained period of monitoring and a cumulative
approach to data collection, i.e. training dataset becomes
more inclusive as data is acquired over time/episodes of
usage. The accumulation of training data over a period of
time should reduce bias and variance as the resulting data
that informs the process of classification is both
representative and generalizable [12].

Perceived accuracy & user experience

The quality of the classification emerging from the training
dataset is generally assessed using ‘hard’ markers of
mathematical accuracy, e.g. cross-validation. It is assumed
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that accurate classification as represented by a
mathematical index will translate into good performance
with respect to the categorization of psychological states
within the context of human-computer interaction. This
assumption disregards the obvious fact that users of
physiological computing systems will possess varying
degrees of subjective self-awareness. The co-existence of
‘hard’ markers of classification accuracy (from the system)
and ‘soft’ markers of subjective self-awareness is
characteristic of interactions with physiological computing
systems. The combination of ‘hard’ and ‘soft’ markers of
classification accuracy yields a third category of accuracy —
which equates to the perceived accuracy of the system from
the perspective of the user (see [4] for a more detailed
discussion).

The perceived accuracy of the classification engine is an
important determinant of the user experience. A system
that is perceived to be accurate in the short-term will create
a positive impression that encourages further use. In the
long-term, an acceptable level of perceived accuracy will
engender trust in the technology [13]. The question of what
is an acceptable level of accuracy for a physiological
computing system has been addressed by previous research
[14,15]. These authors simulated various levels of accuracy
with respect to control of an input device and task difficulty
respectively in order to explore levels of user acceptance
and tolerance for system error.

Current study

The current paper will focus on the relationship between
perceived classification accuracy and mathematical
accuracy of a physiological computing prototype working
in real-time. A system was designed to make a binary
(high/low) classification of the interest level experienced by
the user during the viewing of 40 movie trailers. Data from
EEG, ECG and skin conductance level were collected,
quantified and classified in real-time. Classification of
psychophysiological data was achieved using a Support
Vector Machine (SVM) working on a subject-dependent
basis, i.e. a SVM was generated that was specific to each
individual participant.

The training dataset used to generate the SVM classifier
was obtained at four different points in time as each
participant viewed the series of movie trailers. The initial
system build for classification was achieved on the basis of
a small dataset whereas the final system build utilized a
significantly larger training dataset for classification. Four
system builds are included in the experimental design in
order to explore how the acquisition of training data
influences both ‘hard’ and ‘soft’ markers of classification
accuracy.

At the end of each movie trailer, the participant was
required to provide a subjective binary estimate of interest
and subsequently received feedback on the classification of
interest produced by the system.
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The purpose of this paper is to assess users’ perceptions of
psychophysiological classification based upon real-time
feedback within the context of an interaction with a
working system. We also wished to explore the feasibility
of subject-dependent classification where the classification
algorithm for psychophysiological data is trained to each
user following a brief period of initial exposure. The focus
of current research in this field is on ‘hard’ mathematical
markers of classification accuracy that are often derived on
a retrospective basis [11]. Our contribution is to study the
association between these ‘hard’ markers and the
perception of accuracy from users who have received
explicit feedback from the system during a real-time
interaction.

The study was designed to explore four research questions:

1. How does the accumulation of training data
influence  both  mathematical classification
accuracy and perceived classification accuracy? It
is assumed that both estimates of classification
will improve over each successive build of the
system (due to the cumulative acquisition of
training data and an associated reduction of
variance and bias in the training set)

2. How do user perceptions of accuracy change with
sustained exposure to the system? Is there
evidence for any systematic bias?

3. For subject-dependent classification of
psychophysiology in real-time, how long is
required for a system to generate a sufficient
corpus of data to train a classifier?

4. What is the relationship between mathematical
accuracy and perceived accuracy? Do users tend
to over- or under-estimate classification accuracy?

SYSTEM DESCRIPTION
Conceptual Model

The conceptual model for the system used in the study is
illustrated in Figure 1. Four types of measure are collected
from the participant, each one maps onto three process sub-
components, which are forwarded to the classification
engine in order to categorise the level of interest as high or
low. The concept of interest is divided into three types of
process: (1) activation, i.e. does the content stimulate the
autonomic nervous system? (2) cognition, i.e. does the
content engage novel problem-solving and consolidate
memory formation in the rostral prefrontal cortex of the
brain, and (3) valence, i.e. does the content provoke a
strong positive or negative emotional response (see [10] for
a detailed description of how the concept of interest and
associated measures were derived). If psychophysiological
data indicates that content is stimulating, cognitively
engaging and emotionally provocative, it is deemed to be of
interest to the user. The activation processor is indexed by
autonomic indicators, such as heart rate (HR) and skin
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conductance level (SCL).  The level of electrocortical
activation from the EEG signal over the rostral prefrontal
cortex [16] was used as a measure of cognition. Valence
was represented by frontal EEG asymmetry [17].

Measures from the physiological sensors were forwarded to
the component processors. These features were used as
inputs to the classification engine in the composite model
that expressed interest as a binary (high/low) state. The
output from the classification represents a control input for
a hypothetical process of software adaptation.

Real-time interest classification

A data processing pipeline was designed to: (1) extract the
relevant psychophysiological features, (2) quantify each
category of psychophysiological response, (3) classify the
response as a binary state of interest and label this response.
Because the system works in real-time on a subject-
dependent basis, an initial exposure of the participant to
video clips was used to train the first build of the SVM
classifier. The classifier was re-trained on a new data set
three times after this initial build, e.g. every 7-9 movie
trailers, in order to deliver a steady accumulation of the
training dataset.

Composite Model

—>» ECG (Classify)
Activation  ——
High
—» sc

= eE6 A Comition —f> Interest [

Adaption

Low

Classification

Measure —»  Process ~——————» Interest as Binary
Figure 1. System Model

Due to the complexity of the application framework two
elements have been extracting from the overall structure to
highlight how they functioned within the application. The
first element took the form of a video player sub-window,
which also acted as the means for gathering and processing
the subjective responses to each 60sec video after viewing.
Execution of the video player function drew a clip from the
pool of video material. After the video had been displayed
a new window appeared to prompt the user to deliver a
subjective response (high/low interest). These responses
were processed and forwarded to the export module for
association with psychophysiological responses for that
particular video.
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The second element received feature vector output from the
data export process and checked whether it was necessary
to construct a new version of the classifier. If true, a check
was performed to determine if the current request
corresponded with the first build of the classifier. If this
condition was satisfied, a further check was performed to
determine whether two instances of both classes (i.e. two
examples of high and low class data) existed within the
training dataset. If true, a classifier was constructed.
However, if a classifier already existed and a new classifier
build was required, then data collected for the current
stimulus period (i.e. corresponding to approx. 10 movie
trailers) was added to the existing training set and a new
classifier was constructed based upon this aggregated
dataset. If no new classifier build was required, the train
classifier process was bypassed and new vectors were
classified and output.

Data acquisition

Psychophysiological data was imported in real-time from
two ambulatory physiological sensor technologies: the
Nexus X MKIT © (used to capture autonomic ECG and SCL
responses) and the Enobio © (used to capture EEG
responses). These data were buffered internally and the
process pipeline split into two top-level protocols to process
autonomic data and EEG data respectively.

Physiological responses from the autonomic system were
measured using the Electrocardiogram (ECG, sampled from
the torso) and SCL (distal phalanges, second and forth
finger, non-dominant hand). Both channels were sampled
at 512Hz. Three channels of electroencephalographic
(EEG) data were recorded, measuring alpha (8-12Hz) and
beta (13-30Hz) activity, using the Enobio wireless 3-
channel sensor (sampled at 250Hz) with ground contacts on
left ear lobe and inner ear (Starlabs Inc). A mobile sensor
forehead band was fitted and nasion aligned to ensure
sensor placement at Fp1, Fp2, Fpz and electrodes attached.

The autonomic data processor included filtering for both
electrocardiogram (ECG) and skin conductance level (SCL)
of a 0.5 to 35Hz bandpass and 35Hz lowpass respectively.
The ECG data was subsequently forwarded to a beat
detection process in order to determine the mean and
standard deviation of the inter-beat-interval (IBI). The
filtered SCL data was forwarded to the epoch analysis
module to produce the mean and standard deviation of SCL.
The resulting derivatives from ECG and SCL were
forwarded to a feature store for eventual output.

Data analysis

The EEG data processor performed filtering (Bandpass
0.05-35Hz) and epoch analysis on three channels of EEG
activity derived from Fpl, Fp2 and Fpz. These data were
subjected to a Fast Fourier Transform (FFT) analysis to
determine the total amplitude spectra of the signal in the
alpha and beta bandwidths. Data from the FFT were
forwarded to calculate cognition and valence. The former
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was expressed as a ratio of electrocortical activation (3 /o)
at sites Fpl, Fp2, and FPz. Valence was represented by
frontal EEG asymmetry, which is expressed as the
difference between the natural logs (In) of the total power in
the alpha band of the right and left hemispheres. The
resulting eight derivatives (see Table 1) are forwarded to
the feature store and exported to the train classifier process

Measure Signal Derivatives for Classification
IBI (mean)
Heart Rat
catt Rate IBI (s.d.)
Skin Conductance SCL (mean)

Ratio B /a (Fpl)

Ratio B /a (Fp2)

Ratio B /a (Fpz)
In(aFP2)-In(aFP1)

EEG

Table 1. A list of measures and those signal derivatives
used as input to the classification algorithm.

All derivatives were extracted from a 60 second epoch (i.e.
duration of each movie trailer) to deliver a total of 40
stimulus events. For autonomic measures features were
captured using a 12sec data window with a moving window
of 6sec. For EEG, features are captured using a 12sec of
data with moving 6sec window. This approach was used to
construct a feature vector every 6sec resulting in 10 -1 (due
to the overlapping data 12 second data windows) per sixty
seconds stimulus epoch. This approach delivered a potential
of 360 — (n * 9) classification vectors, where n equals the
total number of vectors used to train the classifier initially.

Classification

The training of the classifier occurred within MatLab using
the deployment command line processor for real-time data
interaction

To train and ascertain estimated performance of the
classifier in real-time, the sequential minimal optimisation
[18] and hold-out cross-validation methods are used on the
aggregated training data. The hold-out cross-validation
method partitions the data into two parts, by randomly
assigning data to either training or testing sets, ensuring that
the classifier is trained and tested with novel data and is
analogous to a real world task. This method of cross-
validation has been shown to provide a more accurate
assessment of potential classifier performance in
comparison to k-fold cross-validation when applied to small
datasets, such as those gained from real-time applications
[19]. When coupled with a loose grid search algorithm,
these methods form the basis for the training and
parameterisation of the SVM in real-time, providing the
optimal settings for the box constraint and sigma values of
the SVM radial basis function (RBF) kernel for each new
instance of training data as the system is used. That is, for
each new build of the system, training data is aggregated
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and cross-validated to create a new classifier in real-time, in
this instance to prevent over fitting of the classifier to the
training data and reduce computation time the box
constraint and sigma values are set to a maximum of 2.

Using this approach a feature vector was constructed every
6 seconds resulting in 10 -1 (due to the overlapping data 12
second data windows) classification vectors per sixty
second stimulus epoch. This gave a potential of 360 — (n *
9) classification vectors, where n equals the total number of
vectors used to train the classifier initially. Thus, nine
classifications were performed in real-time per stimulus
epoch and a majority vote was performed between class
outputs at the end of each epoch to determine the resulting
class for that epoch.

METHODOLOGY

Participants

16 participants (9 female) aged 19-25yrs. took part in the
experiment. However, only 14 participants data were used
for analysis. Data from two participants were excluded
because their responses did not meet a criterion that was
required to train a classifier on four occasions. Specifically,
these two participants did not produce the required
instances of high and low classes over the maximum 10
videos needed to train the system (i.e. the number of videos
remaining in the database was insufficient to permit three
further iterations of the classifier). All procedures and
measures were approved by the University Research Ethics
Committee prior to data collection.

Experimental design

The experiment was designed as a repeated measures study
(i.e. the same participants took part in all build sessions). A
“Wizard of Oz” [20] prototyping approach was derived in
order to convey feedback to the user in real-time. The
application included four build phases over the course of
the experiment designed to investigate how the
accumulation of data into the training set influenced
classification accuracy:

e build 1 was the initial classifier training phase and
required responses from at least two of each of the
target classes (high and low)

e build 2 aggregated the database of responses from
build 1 into a new training data set and the SVM
was re-built

e build 3 aggregated the responses from builds 1 and
2 into a new training data set and the SVM was re-
built

e build 4 aggregated the responses from the previous
3 builds and into a new training data set and the
SVM was re-built

Materials

The stimulus material took the form of movie video trailers
from four genres of film: science fiction, comedy, action
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and horror. The presentation of each movie trailer lasted 60
seconds; each genre contained 10 trailers. Videos were
displayed on a 42” LCD TV screen at 720p resolution and
audio was reproduced through television sterco speakers at
an easy listening volume of 70 dB. Participants sat at an
approximate distance of 1m directly in front of the
television and within easy reach of a computer connected
mouse. Video display and user interactions were captured
using a computer with two display outputs; one screen
output the video and subjective response collection
application interface and the other displayed the classifier
interface. The presentation order of the movie trailers was
randomised for each participant, with each video
presentation drawing from the pool of 40 until all material
was exhausted.

Procedure

After receiving instruction about the experimental
procedure, participants were required to provide written
consent. Electrodes were placed on the torso for ECG and
on the distal phalanges of second and forth finger of the
non-dominant hand for SC. Participants were asked to sit
comfortably but remain as still as possible.

The experimental procedure was completed in two parts,
initial training (build 1) and subsequent instances of
classification/feedback. During the build 1 mode a video
trailer of 60 seconds duration randomly chosen from a pool
of 40 was displayed to the participant. After each video,
participants were shown a simple interface on screen that
asked “was this content interesting? Yes/No.” Once
feedback was received, another screen appeared to allow
the next video in the sequence to be played (“Play next
video? Yes/No”). This procedure was repeated until the
experimenter received a message indicating that a classifier
was being constructed.

Once a classifier had been constructed, the sequence of
events was as follows:

(1) participant views movie trailer

(2) participant provides a subjective rating of whether
the movie trailer was rated as high or low interest.
This rating was added to the training dataset for
subsequent builds of the classifier

(3) The system provides feedback (high/low interest)
to the experimenter for that item based on the
current build of the classification algorithm

(4) Feedback from the system is conveyed verbally to
the participant by the experimenter.

This mode of interaction continued during builds 2-4.

The experimenter was the same person throughout the trial
and it was made clear to the participants that he was simply
a conduit to system feedback.
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RESULTS

The classification accuracy of the system was measured in
mathematical terms using holdout cross-validation (as
described above) and the F; score. The holdout method of
cross-validation uses the entire dataset as both training and
testing data by splitting the data arbitrarily according to
criteria; that is, data is randomly assigned to either training
or testing according to the “set size” determined before
classification (in this case 60% training, 40% testing). The
dataset contains both the classification vectors
(observations) and its associated label (subjective
judgments), testing the SVM model involves classifying the
remaining (40%) novel instances of test data, to determine
accuracy. The labels (subjective judgments) associated with
the test wvectors (observations) are known to the
experimenter but unknown to the SVM model.

The perceived accuracy of the system was expressed as the
degree of agreement between the binary classification
produced by the system in real-time and subjective self-
assessment from the user. Perceived accuracy was
expressed as a percentage figure (i.e. % of agreement) and
in terms of four categories of outcome:

e True Positive (both system and participant rated
the movie as high interest)

e False Positive (system rated the movie as high
interest but participant produced a rating of low
interest)

e True Negative (both system and participant rated
the movie as low interest)

e False Negative (system rated the movie as low
interest but participant produced a rating of high
interest).

Research Question 1: How does the accumulation of
training data influence classification accuracy over
successive builds of the system?

The first question posed by the study addressed the
relationship between the accumulation of training data and
mathematical accuracy (and the perception by the user of
mathematical accuracy). The classification engine was build
through four phases. The first build was based upon a
relatively small number of stimuli (movie clips) and is
assumed to produce the lowest level of classification
accuracy. By the same logic, it is assumed that the fourth
and final build would deliver the highest level of accuracy
because it is based upon the largest corpus of training data.

A univariate ANOVA was conducted to assess the influence
of build on mathematical accuracy. This analysis revealed no
significant influence of build on either index of mathematical
accuracy [F(3,11)=1.40, p=.30]. A second ANOVA was
performed to explore the influence of build on perceived
accuracy. This analysis revealed a marginal main effect
[F(3,11)=3.15, p=.06]; post-hoc analyses indicated that
perceived accuracy was significantly higher for build 1 and 4
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compared to build 2 (p=.04), in addition, perceived accuracy
increased during build 4 compared to build 3 (p=.05). These
finding suggest that perceived accuracy followed a quadratic
pattern over the number of builds, being high at build 1,
falling by 10% at build 2 and rising to original level by build
5. All descriptive statistics are illustrated in Figure 2.
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Figure 2. Means and standard deviation for mathematical
accuracy (F1) and perceived accuracy over four
successive system builds (N=14).

Research Question 2: How does perceived classification
accuracy change over successive builds and sustained
exposure to the system?

The second question concerned the effect of each build on
user perceptions of accuracy with respect to pattern of
responses, i.e. True Positive, False Positive, True Negative,
False Negative. A 4 (build) x 2 (positive/negative) x 2
(true/false) ANOVA was conducted on these data. This
analysis indicated a greater frequency of positive responses
(M=3.04) compared to negative responses (M=0.95) [F(3,11)
= 105.7, p<.01], i.e. participants tended to indicate high
rather than low interest. In addition, there were a greater
number of true (i.e. correct) responses (M=3.23) compared to
false responses (M=0.75) [F(3,11) = 106.3, p<.01].

A significant interaction between positive/negative response
category and true/false [F(3,11) = 11.06, p<.01] revealed a
higher number of correct (M=5.12) compared to false
responses (M=0.96) in positive/high interest category. A
significant interaction between build and true/false [F(3,11) =
8.56, p<.01] indicated that the number of correct responses
was higher during build 4 (M=4.04) compared to build 2
(M=2.75) or build 3 (M=2.93). These findings suggest a
general bias towards positive (i.e. high interest) cases and
true (i.e. correct) responses from the participants. It was also
apparent that participants perceived the frequency of correct
responses (in both positive and negative categories) to peak
following the fourth and final build of the classification
algorithm. The effect of build on positive responses is
illustrated in Figure 3.
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Figure 3. Frequency of True Positives (TP) and False
Positives (FP) over four successive builds of the
classification algorithm (N=14).

Research Question 3: How long is required to train a
subject-dependent classifier?

The study was designed to train a classification algorithm to
the individual on a subject-dependent basis using data from
initial exposure to the system. There is a question regarding
the feasibility of this approach with respect to user
acceptance, i.e. can a classifier be created for all participants
within a short period of time. We found that the system took
an average of 7 videos (i.e. 7 minutes) to construct the SVM.
The maximum number of videos was 12 but this was an
upper limit imposed by the experimental protocol (see
Participants section for further explanation). The minimum
number of videos used to create the SVM was 4.

Research Question 4: What is the relationship between
mathematical classification accuracy and perceived
accuracy?

The final question to be explored concerns the relationship
between mathematical measures of classification accuracy
and users’ perceptions of accuracy during interaction. There
are two aspects to be investigated, the first concerns the
differential between perceived accuracy and mathematical
accuracy, i.e. do users tend to over- or under-estimate with
respect to mathematical classification accuracy. A difference
score was calculated to express the differential between
perceived accuracy and mathematical accuracy [Perceived
Accuracy — Mathematical Accuracy], i.e. positive score
indicates that perceived accuracy was greater than
mathematical accuracy. The mean difference score illustrates
that estimates of perceived accuracy were generally between
4-9% lower than the F1 score but variability was substantial.
A 4 (build) x 2 (index of mathematical accuracy) ANOVA
was performed to explore the impact of build number on this
differential. No significant differences were found with
respect to influence of build number (see Table 2 for
descriptive statistics).

The second aspect of this analysis relates to the degree of
association between perceived classification accuracy and its
mathematical analogue. There is also a secondary issue
related to whether the degree of association between
perceived and mathematical accuracy changes over time with
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each successive build, i.e. does the association between
‘hard’ and ‘soft’ markers of accuracy change with each
successive build. A series of Pearson’s r correlations were
calculated to express the degree of association between
mathematical and perceived accuracy over all four builds of
the classification algorithm. The resulting r scores (Table 4)
demonstrate a positive correlation for F1 that is statistically
significant in the case of all but the second build phase.

F1 Mean
Build ¥ Diff.

1 0.58° .09
[.29]

2 0.37 .04
[.30]

3 0.82" 05
[.24]

4 0.73" 07
[.27]

Table 2. Pearson’s r correlation coefficients between
mathematical classification accuracy and perceived
accuracy. Mean Diff. refers to the differential score
produced when mathematical accuracy was subtracted
from perceived accuracy, standard deviation in
parentheses. * p<.05, **p<.01 (N=14).

DISCUSSION

The purpose of this study was to explore the relationship
between mathematical classification accuracy and the
perception of accuracy from users during a real-time
interaction with explicit feedback. In addition, the
experiment was designed to explore how the size of the
training dataset influenced both ‘hard’ and ‘soft” markers of
classification accuracy.

The system was designed to classify psychophysiological
data in real-time on a subject-dependent basis. The
classification algorithm (SVM) was initially created for each
individual based upon exposure to an average of seven movie
trailers of 1min duration. After the initial build of the
classifier (build 1), the SVM was rebuild every 7-9 movie
trailers to yield three subsequent versions of classifier, each
one based upon on cumulative increase of training data.

The effect of system builds on classification accuracy

Due to high levels of bias and variance in the initial training
set, it was assumed that both mathematical accuracy and
perceived accuracy would be poor during build one and
exhibit a linear increase as the training dataset used to train
the classifier increased over successive builds. The analysis
of both markers of mathematical accuracy (Figure 2)
revealed no significant support for this prediction. It was
notable that a high (e.g. 89%) level of mathematical accuracy
was achieved during the first build based upon approximately
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seven minutes of data collection. This finding is encouraging
with respect to designing a system upon a process of subject-
dependent classification where each algorithm is created
dynamically for each user.

The absence of any subsequent increase in mathematical
accuracy could be a ‘ceiling effect’ i.e. the high level of
accuracy accomplished during build one left little room for
further improvement. Alternatively the 40min duration of
the experiment may have been insufficient to observe the
effect of exposure/data collection on classification accuracy.
Extending the period of exposure and size of the training
dataset beyond the current experiment represents one avenue
for further research.

The perceived accuracy of the classification engine tended to
fluctuate over the four builds (Figure 2). The statistical
analysis support a view that perceived accuracy increased
during the final build compared to builds 2 and 3. High level
of perceived accuracy observed during build one could
reflect a ‘halo effect’” due to the novelty of the system and the
incorporation of technical apparatus, such as sensors. When
participants progressed to the second build phase, perceived
accuracy dropped by 9%, a trend that was mirrored by the F1
score (Figure 2). The decline of perceived accuracy during
the second build may reflect how increased exposure to the
system classification led to a less optimistic (and more
accurate) appraisal of the capabilities of the technology. This
type of analytic understanding of a technical system informs
the development of trust between user and technology [13].

Factors influencing perception of system accuracy

It is important to note that positive responses (high interest)
were more frequent than those in the negative (low interest)
category. This is unsurprising given that our participants
watched movie trailers, which are designed to pique the
interest of the viewer. However, this imbalance did bias the
participant to perceive classification accuracy in terms of the
more frequent (high interest) category. If we consider the
ratio of true (correct) to false (incorrect) responses in the
positive category (Figure 3), participants experienced one
incorrect response for every 9.3 classifications during the
first build. This was the highest accuracy recorded by
participants and represented an initial positive bias. This
index fell to one error for every 3.3 classifications during the
second build phase (Figure 3). The proportion of incorrect
responses in the positive/high interest category subsequently
decreased during builds 3 (one error per 4.5 classification)
and 4 (one error per 6.8 classifications). Given that negative
responses (low interest) were relatively infrequent, it is
argued that the proportion of correct responses in the high
interest category were largely responsible for driving the
perceived classification accuracy.

The number of classifications judged to be correct (in both
high and low interest categories) significantly increased
during the fourth and final build compared to builds 2 and 3.
In addition, the correlation between mathematical scores of
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classification accuracy and perceived accuracy were positive
and significant during final two builds of the system (Table
2). It can be argued that build four represented instances of
classification based upon the largest training dataset, where
bias and variance are both reduced, and convergence between
mathematical and perceived measures of accuracy was a
natural consequence of this factor.

Alternatively, the presence of class imbalance within our
classification system may have functioned as a form of
implicit bias.  Participants learned that output from
classification tended to favour the ‘high interest’ category,
which represented a subtle mechanism of entrainment
whereby participants tended to choose the positive category
without conscious realization. It is also possible that
participants treated the experiment as a game where the goal
was to correctly match their response with one produced by
the system. Hence, participants were predisposed towards
the high interest category, which in turn leads to the creation
of classification engine with an implicit bias towards this
category - and repeated feedback from the system both
reinforces and amplifies this bias towards the high interest
category. A final possibility is that participants tended
towards agreement with the system classification during the
fourth build due to fatigue accumulated during the test
session.

Methodological issues

This issue of class bias with respect to binary classification
presented a dilemma for assessment of the current system.
The obvious solution is to create a balanced training set
where both outcomes are equally likely but that can be
problematic where bias is an inherent property within a
database. Even if the classification system were initially
trained using perfectly balanced data, bias would eventually
creep into the classification engine when it was re-trained
according to the preferences of the individual. A systematic
exploration of class bias using this type of subject-dependent
classification based upon an incremental training dataset is
one topic for further work. The issue of bias due to feedback
could be explored systematically by varying the protocol
used in the current study. For example, the results of each
classification could be withheld from the participant and
shared at the end of the experiment.

The current study used a protocol where system feedback
was conveyed to participants via the experimenter. This
form of feedback was selected due to the technical
limitations of the system and was far from ideal. The
presentation of feedback at the interface is likely to exert a
strong influence on the perception of accuracy. The use of a
human agent introduces an unwelcome level of
‘experimenter bias’ into the experience of the participants.

It was surprising that perceived accuracy and mathematical
scores of accuracy were generally within 10% of one another
(Table 2). There was a general tendency for perceived
accuracy to be higher than mathematical accuracy. The study
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does indicate that F1 score was generally a good predictor of
perceived accuracy; it was significantly positively correlated
with perceived accuracy in all but one of the four builds
(Table 4). The results of the correlation suggest that F1 score
from a classification engine may provide a reasonable
estimate of perceived accuracy from users but more research
is required to support this claim.

CONCLUSION

The purpose of this study was to explore the relationship
between mathematical and perceived classification accuracy
using psychophysiological data in a real-time application. It
was found that mathematical accuracy remained stable
throughout the experiment whilst perceived accuracy showed
some fluctuation related to bias and developing expectations
from the user. The study indicated that perceived accuracy
tended to be an over-estimation of mathematical accuracy
(F1 score) but there was a high degree of positive correlation
between F1 and perceived accuracy.

ACKNOWLEDGEMENTS

This work was partly funded by the European Commission as
part of ICT-2009.4.1 (Digital Libraries and Digital
Preservation) under the ARtSENSE project (270318).

REFERENCES

1. Soleymani, M, Pantic, M & Pun, T. 2012. Multimodal
emotion recognition in response to videos. IEEE
Transactions on Affective Computing, 3(2), 211-223.

2. Soleymani, M. & Pantic, M. 2012. Human-centred
implicit tagging: overview and perspectives. In
Proceedings of the 2012 IEEE International Conference
on Systems, Man and Cybernetics, 3304-3309.

3. Gilroy, S. W., Porteous, J., Charles, F., Cavazza, M.,
Soreq, E., Raz, G., Ikar, L., Or-Borichov, A., Ben-Arie,
U., Klovatch, I. & Hendler, T. (2013). A Brain-Computer
Interface to a Plan-Based Narrative. In F. Rossi (ed.),
1JCAL 633-2

4. Fairclough, S.H. 2009. Fundamentals of physiological
computing. Interacting With Computers, 21, 133-145.

5. Fairclough, S.H. & Gilleade, K.E. 2012. Construction of
the biocybernetic loop: a case study. In Proceedings of
the 14th ACM international conference on Multimodal
interaction (ICMI '12). ACM, New York, NY, USA, 571-
578.

6. Koelstra, S., Miihl, C., Soleymani, M., Lee, J., Yazdani,
A., Ebrahimi, T, Pun, T., Nijjholt, A., and Patras, 1.
2012. DEAP: A Database for Emotion Analysis ;Using
Physiological Signals. IEEE Transactions on Affective
Computing, 3(1), 18-31.

7. Russell, J.A. 1980. A circumplex model of affect.
Journal of Personality and Social Psychology, 39(6),
1161-1178.

8. van der Zwaag, M.D., Janssen, J.H & Westerink,
J.H.D.M. 2013. Directing physiology and mood through

CHI 2015, Crossings, Seoul, Korea

music: validation of an affective music Player, IEEE
Transactions on Affective Computing, 4(1), 57-68.

9. Karran, A.J., Fairclough, S.H. and Gilleade, K.E. 2013.
Towards an adaptive cultural heritage experience using
physiological computing. In CHI '13 Extended Abstracts
on Human Factors in Computing Systems (CHI EA '13).
ACM, New York, NY, USA, 1683-1688.

10.Karran, A.J. & Kreplin, U. 2014. The drive to explore:
physiological computing in a cultural heritage context. In
Fairclough, S.H. & Gilleade, K. (Eds.) Advances in
Physiological Computing. Springer. 169-195.

11.Novak, D., Mihelj, M. & Munih, M. 2012. A survey of
methods for data fusion and system adaptation using
autonomic nervous system responses in physiological
computing. Interacting With Computers, 24, 154-172.

12.Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F. &
Arnaldi, B. 2007. A review of classification algorithms
for EEG-based Brain-Computer Interfaces. Journal of
Neural Engineering, 4, R1-R13.

13.Miller, C. A. 2005. Trust in adaptive automation: The
role of etiquette in tuning trust via analogic and affective
methods. Paper presented at the First International
Conference on Augmented Cognition, Las Vegas, NV.

14. Van de Laar, B, Bos Plass-Oude, D., Reuderink, B.,
Poels, M. & Nijholt, A. 2013. How much control is
enough? Influence of unreliable input on user experience.
IEEE Transactions on Cybernetics, 43(6), 1584-1592.

15.Novak, D., Nagle, A. & Riener, R. 2014. Linking
recognition accuracy and user experience in an affective
feedback loop. IEEE Transactions on Affective
Computing, 5(2), 168-172.

16. Ramnani, N. & Owen, A.M. 2004. Anterior prefrontal
cortex: insights into function from anatomy and
neuroimaging. Nature Reviews Neuroscience, 5, 184-
194.

17.Coan J.A., Allen J.J. 2004. Frontal EEG asymmetry as a
moderator and mediator of emotion. Biological
Psychology. 67(1) 7-49.

18. Platt J.C. 1999. Fast training of support vector machines
using sequential minimal optimization. In Advances in
kernel methods, Bernhard Schlkopf, Christopher J. C.
Burges, and Alexander J. Smola (Eds.). MIT Press,
Cambridge, MA, USA 185-208

19.Isaksson, A., Wallman, M., Géransson, H. & Gustafsson,
M.G. 2008. “Cross-validation and bootstrapping are
unreliable in small sample classification”. Pattern
Recognition Letters, 29(14), 1960-1965

20.Kelley, J. F., “An iterative design methodology for user-
friendly natural language office information
applications”. ACM Transactions on Office Information
Systems, March 1984, 2:1, pp. 26—41.

3037



