Index and query documents
Learn how to use the Redis query engine with JSON and hash documents.
This example shows how to create a search index for JSON documents and run queries against the index. It then goes on to show the slight differences in the equivalent code for hash documents.
Initialize
Make sure that you have Redis Community Edition
or another Redis server available. Also install the
Predis
client library if you
haven't already done so.
Add the following dependencies:
<?php
require 'vendor/autoload.php';
use Predis\Client as PredisClient;
use Predis\Command\Argument\Search\AggregateArguments;
use Predis\Command\Argument\Search\CreateArguments;
use Predis\Command\Argument\Search\SearchArguments;
use Predis\Command\Argument\Search\SchemaFields\NumericField;
use Predis\Command\Argument\Search\SchemaFields\TextField;
use Predis\Command\Argument\Search\SchemaFields\TagField;
use Predis\Command\Argument\Search\SchemaFields\VectorField;
Create data
Create some test data to add to your database:
$user1 = json_encode([
'name' => 'Paul John',
'email' => '[email protected]',
'age' => 42,
'city' => 'London',
], JSON_THROW_ON_ERROR);
$user2 = json_encode([
'name' => 'Eden Zamir',
'email' => '[email protected]',
'age' => 29,
'city' => 'Tel Aviv',
], JSON_THROW_ON_ERROR);
$user3 = json_encode([
'name' => 'Paul Zamir',
'email' => '[email protected]',
'age' => 35,
'city' => 'Tel Aviv',
], JSON_THROW_ON_ERROR);
Add the index
Connect to your Redis database. The code below shows the most basic connection but see Connect to the server to learn more about the available connection options.
$r = new PredisClient([
'scheme' => 'tcp',
'host' => '127.0.0.1',
'port' => 6379,
'password' => '',
'database' => 0,
]);
Create an
index.
In this example, only JSON documents with the key prefix user:
are indexed.
For more information, see
Query syntax.
$schema = [
new TextField('$.name', 'name'),
new TagField('$.city', 'city'),
new NumericField('$.age', "age"),
];
try {
$r->ftCreate("idx:users", $schema,
(new CreateArguments())
->on('JSON')
->prefix(["user:"]));
}
catch (Exception $e) {
echo $e->getMessage(), PHP_EOL;
}
Add the data
Add the three sets of user data to the database as
JSON objects.
If you use keys with the user:
prefix then Redis will index the
objects automatically as you add them:
$r->jsonset('user:1', '$', $user1);
$r->jsonset('user:2', '$', $user2);
$r->jsonset('user:3', '$', $user3);
Query the data
You can now use the index to search the JSON objects. The
query
below searches for objects that have the text "Paul" in any field
and have an age
value in the range 30 to 40:
$res = $r->ftSearch("idx:users", "Paul @age:[30 40]");
echo json_encode($res), PHP_EOL;
// >>> [1,"user:3",["$","{\"name\":\"Paul Zamir\",\"email\":\"[email protected]\",\"age\":35,\"city\":\"London\"}"]]
Specify query options to return only the city
field:
$arguments = new SearchArguments();
$arguments->addReturn(3, '$.city', true, 'thecity');
$arguments->dialect(2);
$arguments->limit(0, 5);
$res = $r->ftSearch("idx:users", "Paul", $arguments);
echo json_encode($res), PHP_EOL;
// >>> [2,"user:1",["thecity","London"],"user:3",["thecity","Tel Aviv"]]
Use an aggregation query to count all users in each city.
$ftAggregateArguments = (new AggregateArguments())
->groupBy('@city')
->reduce('COUNT', true, 'count');
$res = $r->ftAggregate('idx:users', '*', $ftAggregateArguments);
echo json_encode($res), PHP_EOL;
// >>> [2,["city","London","count","1"],["city","Tel Aviv","count","2"]]
Differences with hash documents
Indexing for hash documents is very similar to JSON indexing but you need to specify some slightly different options.
When you create the schema for a hash index, you don't need to
add aliases for the fields, since you use the basic names to access
the fields anyway. Also, you must use HASH
for the On()
option
when you create the index. The code below shows these changes with
a new index called hash-idx:users
, which is otherwise the same as
the idx:users
index used for JSON documents in the previous examples.
$hashSchema = [
new TextField('name'),
new TagField('city'),
new NumericField('age'),
];
try {
$r->ftCreate("hash-idx:users", $hashSchema,
(new CreateArguments())
->on('HASH')
->prefix(["huser:"]));
}
catch (Exception $e) {
echo $e->getMessage(), PHP_EOL;
}
You use hmset()
to add the hash
documents instead of jsonset()
.
Supply the fields as an array directly, without using
json_encode()
.
$r->hmset('huser:1', [
'name' => 'Paul John',
'email' => '[email protected]',
'age' => 42,
'city' => 'London',
]);
$r->hmset('huser:2', [
'name' => 'Eden Zamir',
'email' => '[email protected]',
'age' => 29,
'city' => 'Tel Aviv',
]);
$r->hmset('huser:3', [
'name' => 'Paul Zamir',
'email' => '[email protected]',
'age' => 35,
'city' => 'Tel Aviv',
]);
The query commands work the same here for hash as they do for JSON (but
the name of the hash index is different). The format of the result is
almost the same except that the fields are returned directly in the
result array rather than in a JSON string with $
as its key:
$res = $r->ftSearch("hash-idx:users", "Paul @age:[30 40]");
echo json_encode($res), PHP_EOL;
// >>> [1,"huser:3",["age","35","city","Tel Aviv","email","[email protected]","name","Paul Zamir"]]
More information
See the Redis query engine docs for a full description of all query features with examples.