
Ruby - Feature #10600

[PATCH] Queue#close

12/15/2014 09:12 AM - djellemah (John Anderson)

Status: Closed   

Priority: Normal   

Assignee: ko1 (Koichi Sasada)   

Target version:    

Description

In a multiple-producer / multiple-consumer situation using blocking enq and deq, closing a queue cleanly is difficult. It's possible using

a queue poison token, but unpleasant because either producers have to know how to match up number of poison tokens with

number of consumers, or consumers have to keep putting the poison back into the queue which complicates testing for empty and

not blocking on deq.

This patch (from trunk at b2a128f) implements Queue#close which will close the queue to producers, leaving consumers to deq the

remaining items. Once the queue is both closed and empty, consumers will not block. When an empty queue is closed, all

consumers blocking on deq will be woken up and given nil.

With Queue#close, clean queue shutdown is simple:

queue = SizedQueue.new 1000

consumer_threads = lots_of.times.map do

  Thread.new do

    while item = queue.pop

      do_work item

    end

  end

end

source = somewhat_async_enumerator

producer_threads = a_few.times.map do

  Thread.new do

    loop{queue << source.next}

  end

end

producer_threads.each &:join

queue.close

consumer_threads.each &:join

Related issues:

Related to Ruby - Feature #17357: `Queue#pop` should have a block form for cl... Open

Associated revisions

Revision fd7ac9f3c9e106a57869da762a383536636f0f3d - 08/26/2015 10:59 PM - ko1 (Koichi Sasada)

thread_tools.c: add Queue#close(exception=false) and

SizedQueue#close(exception=false).

[Feature #10600]

Trying to deq from a closed empty queue return nil

if exception parameter equals to false (default).

If exception parameter is truthy, it raises

ClosedQueueError (< StopIteration).

ClosedQueueError inherits StopIteration so that you can write:

loop{ e = q.deq; (using e) }

Trying to close a closed queue raises ClosedQueueError.

Blocking threads to wait deq for Queue and SizedQueue will be

restarted immediately by returning nil (exception=false) or

raising a ClosedQueueError (exception=true).

Blocking threads to wait enq for SizedQueue will be

restarted by raising a ClosedQueueError immediately.

The above specification is not proposed specification, so that

06/07/2025 1/9



we need to continue discussion to conclude specification this

method.

test/thread/test_queue.rb: add tests originally written by

John Anderson and modify detailed behavior.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51699 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision fd7ac9f3 - 08/26/2015 10:59 PM - ko1 (Koichi Sasada)

thread_tools.c: add Queue#close(exception=false) and

SizedQueue#close(exception=false).

[Feature #10600]

Trying to deq from a closed empty queue return nil

if exception parameter equals to false (default).

If exception parameter is truthy, it raises

ClosedQueueError (< StopIteration).

ClosedQueueError inherits StopIteration so that you can write:

loop{ e = q.deq; (using e) }

Trying to close a closed queue raises ClosedQueueError.

Blocking threads to wait deq for Queue and SizedQueue will be

restarted immediately by returning nil (exception=false) or

raising a ClosedQueueError (exception=true).

Blocking threads to wait enq for SizedQueue will be

restarted by raising a ClosedQueueError immediately.

The above specification is not proposed specification, so that

we need to continue discussion to conclude specification this

method.

test/thread/test_queue.rb: add tests originally written by

John Anderson and modify detailed behavior.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51699 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision e2609033ab07fb38fcaf1bf37382fb6dcc2d9985 - 11/21/2015 12:32 AM - ko1 (Koichi Sasada)

thread_sync.c: reduce the specification of Queue#close.

Queue#close accepts no arguments.

deq'ing on closed queue returns nil, always.

[Feature #10600]

test/thread/test_queue.rb: catch up this fix.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision e2609033 - 11/21/2015 12:32 AM - ko1 (Koichi Sasada)

thread_sync.c: reduce the specification of Queue#close.

Queue#close accepts no arguments.

deq'ing on closed queue returns nil, always.

[Feature #10600]

test/thread/test_queue.rb: catch up this fix.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

History

#1 - 12/15/2014 09:35 AM - ko1 (Koichi Sasada)

Interesting. I understand your motivation.

I have several questions (design choise)

(1) should we flush all remaining items in queue when it is closing?

06/07/2025 2/9



This specification can be interrupt.

Now, your proposal does not flush.

(2) should we allow "re-open"?

We can make it. But it makes thread programming difficult to control.

Maybe we need to survey other language / libraries.

#2 - 12/15/2014 01:01 PM - nobu (Nobuyoshi Nakada)

(3) Shouldn't Queue#pop also raise an exception if the queue is empty and closed, instead of returning nil?

(4) What happens on another thread which is blocked at SizedQueue#push?

#3 - 12/15/2014 02:37 PM - djellemah (John Anderson)

Koichi Sasada wrote:

Interesting. I understand your motivation.

 It's always nice to be understood ;-)

I have several questions (design choise)

(1) should we flush all remaining items in queue when it is closing?

This specification can be interrupt.

 I'm not sure what you mean here?

Now, your proposal does not flush.

 No, because in some cases there will still be items in the queue which the consumers have not finished processing. Flush on close would mean those

items would be lost.

queue.close.clear would achieve flush, but it would not be atomic.

(2) should we allow "re-open"?

We can make it. But it makes thread programming difficult to control.

 I'm leaning towards no. If the queue could be re-opened, the consumer side would not know with certainty when to let consumer threads end. So the

shutdown simplicity would be gone.

Maybe we need to survey other language / libraries.

 No help from the wikipedia entry - it just assumes that the producer and consumer will run forever (while (true) ...): 

http://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

Java's BlockingQueue is the same: https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html There are many stackoverflow

questions on how to know when a queue is finished. Most of the answers suggest the poison pill approach :-(

.net TPL has a Complete() method http://msdn.microsoft.com/en-us/library/hh228601%28v=vs.110%29.aspx I can't find anything about re-opening.

Go allows channels to be closed https://gobyexample.com/closing-channels , does not flush items, and cannot reopen a channel 

https://groups.google.com/forum/#!topic/golang-nuts/e0jYSvJhPqA

This clojure library has produce-done https://github.com/martintrojer/pipejine . I couldn't find anything about re-opening, but I suspect a clojure library

wouldn't go for that anyway.

Nobuyoshi Nakada wrote:

(3) Shouldn't Queue#pop also raise an exception if the queue is empty and closed,

instead of returning nil?

06/07/2025 3/9

http://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html
http://msdn.microsoft.com/en-us/library/hh228601%28v=vs.110%29.aspx
https://gobyexample.com/closing-channels
https://groups.google.com/forum/#!topic/golang-nuts/e0jYSvJhPqA
https://github.com/martintrojer/pipejine


 I'm not sure. nil allows for

while item = queue.deq

  ...

end

 whereas StopIteration would work nicely with

loop do

  item = queue.deq

  ...

end

 maybe both - queue.close(StopIteration). But that raises other questions - what to do when this happens:

queue.close

queue.close(RuntimeError.new 'queue is now closed')

queue.close(StopIteration)

 But the parameter to queue.close would have to be stored anyway to know what to return from deq, so subsequent calls to close could check that the

new parameter == the old parameter.

(4) What happens on another thread which is blocked at SizedQueue#push?

 Thanks, I didn't think of that. I think the reason for Queue#push to raise an exception when the queue is closed is to signal that the programmer made

an error. So following that logic, when the producer side calls queue.close and then continues to enq items, that's a programmer error.

Does that make sense? If so I'll update the patch to make SizedQueue#push behave like that.

#4 - 12/17/2014 05:44 PM - djellemah (John Anderson)

- File queue-close-2.diff added

I thought this specification would be more clear:

/*

 * Document-method: Queue#close

 * call-seq: close

 *

 * Closes the queue to producers. A closed queue cannot be re-opened.

 *

 * After the call to close completes, the following are true:

 *

 * - closed? will return true

 *

 * - calling enq/push/<< will raise an exception

 *

 * - calling deq/pop/shift will return an object from the queue as usual.

 *

 * - when empty? is true, deq(non_block=false) will not suspend and

 *   will return nil. deq(non_block=true) will raise an exception.

 *

 * And for SizedQueue, these will also be true:

 *

 * - each thread already suspended in enq at the time of the call

 *   to close will be allowed to push its object as usual.

 *

 * - empty? will be false when there are either objects in the queue, or

 *   producers which were suspended at the time of the call to close but whose

 *   objects are not yet in the queue. Therefore, it can be true (very

 *   briefly) that empty? == false && size == 0, since size returns the number

 *   of objects actually in the queue.

 */

 An updated patch to implement that is attached. I've written some updated tests as well, but I've left those out of the patch for now.

I thought about (4) some more. What I've implemented in this patch was more difficult than throwing an exception as I suggested previously, but I

think the semantics of this approach are somewhat less surprising.

#5 - 02/25/2015 07:56 PM - djellemah (John Anderson)

- File patch-25f99aef.diff added

06/07/2025 4/9



Here is the full patch including tests and updated rdoc comments. diffed from current trunk 25f99aef.

#6 - 03/19/2015 11:56 AM - djellemah (John Anderson)

Another item for the survey - this is how Go channels implement close (and rendezvous)

https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub

#7 - 03/20/2015 06:15 PM - djellemah (John Anderson)

Closable queues in c++ in google-concurrency-library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3533.html#closed_queues

http://code.google.com/p/google-concurrency-library/

#8 - 03/25/2015 07:31 PM - djellemah (John Anderson)

- File queue_benchmark.rb added

Some performance numbers, using the attached benchmark script:

$ ruby queue_benchmark.rb 100000

RUBY_DESCRIPTION: ruby 2.3.0dev (2015-03-25 trunk 50089) [x86_64-linux]

Queue#close: no

                                                         user     system      total        real

01 producer 01 consumer                              2.230000   0.110000   2.340000 (  2.219983)

01 producer 02 consumer                              2.360000   0.170000   2.530000 (  2.348708)

01 producer 99 consumer                              9.450000   5.290000  14.740000 ( 10.081818)

02 producer 01 consumer                              2.420000   0.080000   2.500000 (  2.348568)

99 producer 01 consumer                              6.850000   3.940000  10.790000 (  7.464203)

$ ruby queue_benchmark.rb 100000

RUBY_DESCRIPTION: ruby 2.3.0dev (2015-03-25 queue-close 50089) [x86_64-linux]

Queue#close: yes

                                                         user     system      total        real

01 producer 01 consumer                              2.380000   0.120000   2.500000 (  2.368862)

01 producer 02 consumer                              2.460000   0.170000   2.630000 (  2.460940)

01 producer 99 consumer                              9.420000   5.350000  14.770000 ( 10.075400)

02 producer 01 consumer                              2.970000   0.130000   3.100000 (  2.894214)

99 producer 01 consumer                              7.050000   4.100000  11.150000 (  7.676364)

#9 - 04/27/2015 07:28 PM - djellemah (John Anderson)

clojure's core.async has close! which implements the same semantics proposed by this issue.

https://clojure.github.io/core.async/#clojure.core.async/close%21

#10 - 08/22/2015 09:09 AM - ko1 (Koichi Sasada)

- Assignee set to ko1 (Koichi Sasada)

Thank you for your great survey. I want to introduce Queue#close in Ruby 2.3.

Just now I'm not sure it is okay to provide think Queue#close(token) API because there are no similar examples in Ruby.

The followings are summary of your survey.

language API deq from empty queue after close?

Java N/A

go Close return with indication 

https://golang.org/ref/spec#Close

C++ close() return queue_op_status::closed (element is

returned by reference)

closure close! return nil

Ruby's similar operation What happen after read from empty stream?

File#read return nil

File#read_nonblock() raise EOFError

06/07/2025 5/9

https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3533.html#closed_queues
http://code.google.com/p/google-concurrency-library/
https://clojure.github.io/core.async/#clojure.core.async/close%21
https://golang.org/ref/spec#Close


Ruby's similar operation What happen after read from empty stream?

File#read_nonblock(exception: false) return nil

File#gets return nil

Options:

1. Queue#close(token)

2. Queue#close() and raise on deq from empty closed Queue

3. Queue#close() and return nil from empty closed Queue (raise by deq(nonblock=true))

4. Queue#close(exc) -> (2) if exc is not nil, (3) if exc is nil

5. Queue#close(exception: true/false) -> (2) if exception is true (specific exception, such as ClosedQueueError < StopIteration), (3) if exception is

false

6. Queue#close() and provide Queue#deq(exception: false)

(3) is similar to IO's gets/read/...

(6) is similar to IO's read_nonblock.

I think (1) is over-spec. (4) should be nice than (1). But I like (5) because it is more simple.

#11 - 08/23/2015 07:19 AM - funny_falcon (Yura Sokolov)

You misread about Go channel:

Sending to or closing a closed channel causes a run-time panic.

 (on empty channel) receive operations will return the zero value for the channel's type without blocking. The multi-valued receive operation

returns a received value along with an indication of whether the channel is closed.

#12 - 08/26/2015 10:59 PM - ko1 (Koichi Sasada)

- Status changed from Open to Closed

Applied in changeset r51699.

thread_tools.c: add Queue#close(exception=false) and

SizedQueue#close(exception=false).

[Feature #10600]

Trying to deq from a closed empty queue return nil

if exception parameter equals to false (default).

If exception parameter is truthy, it raises

ClosedQueueError (< StopIteration).

ClosedQueueError inherits StopIteration so that you can write:

loop{ e = q.deq; (using e) }

Trying to close a closed queue raises ClosedQueueError.

Blocking threads to wait deq for Queue and SizedQueue will be

restarted immediately by returning nil (exception=false) or

raising a ClosedQueueError (exception=true).

Blocking threads to wait enq for SizedQueue will be

restarted by raising a ClosedQueueError immediately.

The above specification is not proposed specification, so that

we need to continue discussion to conclude specification this

method.

test/thread/test_queue.rb: add tests originally written by

John Anderson and modify detailed behavior.

#13 - 08/26/2015 11:19 PM - ko1 (Koichi Sasada)

- Status changed from Closed to Assigned

I committed r51699 to try Queue#close.

I changed proposed behavior:

#close(token=nil) -> #close(exception=false) (variant of (5) in #10) because:

I feel strange that raising exception if token is Exception (I can't pass Exception objects with token)

Considering exception name is not valuable task. Only "ClosedQueueError" is enough. No need to worry about exception type.

wake-up all blocking threads waiting enq for SizedQueue and raise ClosedQueueError because:

06/07/2025 6/9

https://redmine.ruby-lang.org/issues/10600


waiting threads can block eternally if no consumer threads deq a Queue.

It is simple rule to know: "nobody can not enq closed Queue". I think "waiting for enq" is BEFORE enq.

Could you try that?

Discussion:

How about the above (committed) specification?

ClosedQueueError inherits StopIteration, not ThreadError. Is it okay?

"exception" optional parameter is reasonable or not? Should be "#close(exception: false)" or "#close!"?

BTW, I found that it is nice feature to synchronize starting multiple threads together.

synq = Queue.new

10.times{

  Thread.new{

    synq.pop #=> nil from closed Queue.

    # do something

  }

}

# do something initialization

synq.close

#14 - 08/27/2015 05:33 AM - nagachika (Tomoyuki Chikanaga)

Hello,

I'm interested in this topic.

I have some opinions about API design.

I'd like to specify the object to be returned by closed Queue#pop. Application could push nil to Queue as a significant value and.

And I think whether Queue#pop return nil(or something indicate the `EOQ') or raise exception should be determined by parameter of Queue#pop/deq.

If the behavior of Queue#pop is specified by Queue#close, you should know how the queue could be closed to write the code call Queue#pop, but it

could be written by different programmers. And the worse the both could be happen.

How about adding keyword argument to Queue#pop,deq?

queue.pop(exception: false, eoq: nil) # raise ClosedQueue if exception is true, otherwise return eoq.

 At last, if you can set counter to Queue#close really close the Queue, it easy to write multiple producer pattern. This is an advanced functionality and

could be discussed on another ticket. How do you think?

ex)

def produce(q)

  while obj = get_something

    q.push(obj)

  end

  q.close

end

writers = 4

q = Queue.new(writers_count: writers)

writers.times { Thread.start { produce(q) } }

while obj = q.pop  # q.pop return nil after q.close was called 4 times

  # do something

end

#15 - 09/01/2015 09:35 AM - ko1 (Koichi Sasada)

At last, if you can set counter to Queue#close really close the Queue, it easy to write multiple producer pattern. This is an advanced functionality

and could be discussed on another ticket. How do you think?

 I allow to close multiple times because IO#close also permits multiple close.

I can agree that close() should not have option and deq specify behavior.

Which is suitable default?

It is trivial concern, but keyword parameters for C methods are bit slow.

So that pop(keywords...) should be slower than without keywords. (but trivial)

06/07/2025 7/9



#16 - 09/03/2015 01:08 PM - djellemah (John Anderson)

Sorry I didn't reply earlier, it's been a while since I checked this list.

I think ClosedQueueError < StopIteration makes sense. ThreadError (from other

methods) is not related to ClosedQueueError, but I can't see if that is a

problem.

I have some real-world code (because of db-connections, operations must be on

separate threads. Might also be useful for Fibers?) which can now be

simplified to something like this:

class NotificationActor

  def initialize

    @queue = SizedQueue.new 1

  end

  def stop

    @queue.close(exception: true)

  end

  def run

    consumer = Thread.new do

      begin

        loop do

          next_item = @queue.pop

          notify_listeners_of next_item

        end

      rescue

        # shut down as quickly as possible

        @queue.close(exception: true).clear

        raise

      end

    end

    loop do

      items_from_db {|item| @queue << item }

    end

  ensure

    # shut down as quickly as possible

    @queue.close(exception: true).clear

    # raise possible exceptions from consumer

    consumer.kill unless consumer.join(5)

  end

end

 I'm not very happy with that design, but I think it is a reasonable real-world use of SizedQueue.

Re-doing that code, close(exception: true) caught me out twice. deq(non_block: true)

normally catches me out too. Perhaps it's good that they both consistently

catch me out ;-)

If it is necessary to support a non-nil close token, perhaps something

like Queue.new(close_token: some_unique_object) would be better than

close(some_unique_object).

When deq/pop takes parameters (like IO#read_nonblock) the code is clear, but for one instance

of Queue those parameters will most likely be the same for every call.

Which makes me think maybe Queue.new(close_with_exception: true).

"'waiting for enq' is BEFORE enq" - yes, from the inside of the queue. From

outside the queue they are part of the same operation. The idea behind close

was to have a clean shut-down. If that still applies, maybe there needs to be

another method for emergency shut-down. Or maybe queue.close.clear is sufficient

for that?

#17 - 11/21/2015 12:29 AM - ko1 (Koichi Sasada)

I decide to reduce specification of Queue#close. For closed queues, deq returns nil.

No exception is raised for deq.

Other tokens are also not supported.

06/07/2025 8/9



We can introduce them as new feature.

For Ruby 2.3 (or just now), Queue#close is only for shortcut of such common case.

consumer_threads = (1..3).map{

  Thread.new do

    while e = q.pop

      do_something e

    end

  end

}

q.push 1

q.push 2

3.times{

  q.push nil # terminater

}

 We can write last 3 lines with:

q.close

 I agree that it is reasonable to add options (raise exception, and so on) to Queue.new.

We can add this feature later.

#18 - 11/21/2015 12:32 AM - ko1 (Koichi Sasada)

- Status changed from Assigned to Closed

Applied in changeset r52691.

thread_sync.c: reduce the specification of Queue#close.

Queue#close accepts no arguments.

deq'ing on closed queue returns nil, always.

[Feature #10600]

test/thread/test_queue.rb: catch up this fix.

#19 - 12/10/2020 08:31 AM - mame (Yusuke Endoh)

- Related to Feature #17357: `Queue#pop` should have a block form for closed queues added

Files

queue-close.diff 5.18 KB 12/15/2014 djellemah (John Anderson)

queue-close-2.diff 10.2 KB 12/17/2014 djellemah (John Anderson)

patch-25f99aef.diff 25.2 KB 02/25/2015 djellemah (John Anderson)

queue_benchmark.rb 2.95 KB 03/25/2015 djellemah (John Anderson)

Powered by TCPDF (www.tcpdf.org)

06/07/2025 9/9

https://redmine.ruby-lang.org/issues/10600
http://www.tcpdf.org

