Ruby - Bug #13882

Exception in "'ensure’ stops threads from exiting
09/08/2017 08:17 PM - zanker (Zachary Anker)

Status: Closed

Priority: Normal

Assignee: ko1 (Koichi Sasada)

Target version:

ruby -v: 241 Backport: 2.2: UNKNOWN, 2.3: UNKNOWN, 2.4:
UNKNOWN

Description

When the Ruby process is gracefully exiting, if a thread has an exception during an ensure block it appears the Ruby process forgets
it's attempting to exit and will keep running forever. Since there's still an alive thread, rb_thread_terminate_all doesn't finish (since
vm_living_thread_num(vm) > 1 is still true), and the Ruby process never exits until you kill -9 it.

| was able to cause this going back as far as MRI 2.0.0, but didn't have a 1.9.3 install to double check with. Repo case:

Thread.new do
loop do
puts "Loop start"

begin
begin
sleep
ensure
raise
end
rescue => e
p e
end
end
end

sleep 1
exit

Will result in a two Loop start messages.

When running GDB on the process, we see Ruby is waiting on sleep_forever which is expected, but you can see the main thread is
stuck on rb_thread_terminate_all:

(gdb) t a a bt

Thread 3 (Thread 0x7f956f36e700 (LWP 401088)):

#0 0x00000033d90df113 in poll () from /lib64/libc.so.6

#1 0x00007£9575863775 in timer_thread_sleep (p=0x7£957524c008) at thread_pthread.c:1460
#2 thread_timer (p=0x7f957524c008) at thread_pthread.c:1568

#3 0x00000033d9407aal in start_thread () from /l1lib64/libpthread.so.0

#4 0x00000033d90e893d in clone () from /lib64/libc.so.6

Thread 2 (Thread 0x7£956£363700 (LWP 401117)):
#0 0x00000033d940b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /1lib64/libpthread.so.0
#1 0x00007£957585d959 in native_cond_wait (cond=<value optimized out>, mutex=<value optimized out
>) at thread_pthread.c:343
#2 0x00007£f95758675b8 in native_sleep (th=0x7f956c491800, timeout_tv=0x0) at thread_pthread.c:114
7
#3 0x00007£95758682f2 in sleep_forever () at thread.c:1083
#4 rb_thread_sleep_forever () at thread.c:1157
#5 0x00007£95757elcab in rb_f_sleep (argc=0, argv=0x7f956bceb6a778) at process.c:4393
#6 0x00007£9575890bda in vm_call_cfunc_with_frame (th=0x7£956c491800, reg_cfp=0x7£956bde6940, cal
ling=<value optimized out>, ci=0x7£956e98c910, cc=<value optimized out>)
at vm_insnhelper.c:1752

05/26/2025 1/4

#7 wvm_call_cfunc (th=0x7£956c491800, reg_cfp=0x7f956bde6940, calling=<value optimized out>, ci=0x
7£956e98c910, cc=<value optimized out>) at vm_insnhelper.c:1847
#8 0x00007£957589f12b in vm_exec_core (th=<value optimized out>, initial=<value optimized out>) a
t insns.def:1066
#9 0x00007£95758a470b in vm_exec (th=0x7£f956c491800) at vm.c:1727
#10 0x00007£95758abc04 in invoke_block () at vm.c:969
#11 invoke_iseq_block_from_c () at vm.c:1014
#12 invoke_block_from_c_splattable () at vm.c:1032
#13 vm_yield () at vm.c:1074
#14 rb_yield_0 () at vm_eval.c:1010
#15 loop_i () at vm_eval.c:1088
#16 0x00007£9575755954 in rb_rescue2 (b_proc=0x7f95758ab8b0 <loop_i>, datal=0, r_proc=0x7f957588b2
a0 <loop_stop>, dataz2=0) at eval.c:838
#17 0x00007£9575890bda in vm_call_cfunc_with_frame (th=0x7£f956c491800, reg_cfp=0x7f956bde69a0, cal
ling=<value optimized out>, ci=0x7£956c5090f0, cc=<value optimized out>)

at vm_insnhelper.c:1752
#18 vm_call_cfunc (th=0x7£956c491800, reg_cfp=0x7f956bde69a0, calling=<value optimized out>, ci=0x
7£956c5090£0, cc=<value optimized out>) at vm_insnhelper.c:1847
#19 0x00007£95758a726b in vm_call_method (th=0x7£956c491800, cfp=0x7f956bde69al0, calling=<value op
timized out>, ci=<value optimized out>, cc=<value optimized out>)

at vm_insnhelper.c:2295
#20 0x00007£957589f97c in vm_exec_core (th=<value optimized out>, initial=<value optimized out>) a
t insns.def:967
#21 0x00007£95758a470b in vm_exec (th=0x7£956c491800) at vm.c:1727
#22 0x00007£95758a5771 in invoke_block (th=0x7£956c491800, captured=<value optimized out>, self=14
0279789266160, argc=<value optimized out>, argv=<value optimized out>,

passed_block_handler=<value optimized out>, cref=0x0, splattable=0, is_lambda=0) at vm.c:969
#23 invoke_iseq_block_from_c (th=0x7f956c491800, captured=<value optimized out>, self=140279789266
160, argc=<value optimized out>, argv=<value optimized out>,

passed_block_handler=<value optimized out>, cref=0x0, splattable=0, is_lambda=0) at vm.c:1014
#24 0x00007£95758a581f in invoke_block_from_c_unsplattable (th=<value optimized out>, block=<value
optimized out>, self=<value optimized out>, argc=<value optimized out>,

argv=<value optimized out>, passed_block_handler=<value optimized out>, is_lambda=<value optim
ized out>) at vm.c:1101
#25 0x00007£95758a595a in vm_invoke_proc (th=0x7£956c491800, proc=0x7f956e04da50, self=14027978926
6160, argc=0, argv=0x7f£956c547c18, passed_block_handler=0) at vm.c:1126
#26 0x00007£9575864589 in thread_do_start (th=0x7f956c491800, stack_start=0x7f956£f364000) at threa
d.c:577
#27 thread_start_func_2 (th=0x7£956c491800, stack_start=0x7f956£364000) at thread.c:619
#28 0x00007£95758649b6 in thread_start_func_1 (th_ptr=0x7£956c491800) at thread_pthread.c:887
#29 0x00000033d9407aal in start_thread () from /lib64/libpthread.so.0
#30 0x00000033d90e893d in clone () from /lib64/libc.so.6

Thread 1 (Thread 0x7f95756ab760 (LWP 401080)) :

#0 0x00000033d940b68c in pthread_cond_wait@ERGLIBC_2.3.2 () from /1ib64/libpthread.so.0

#1 0x00007£957585d959 in native_cond_wait (cond=<value optimized out>, mutex=<value optimized out
>) at thread_pthread.c:343

#2 0x00007£95758675b8 in native_sleep (th=0x7£9575229400, timeout_tv=0x0) at thread_pthread.c:114
7

#3 0x00007£9575867e34 in rb_thread_terminate_all () at thread.c:494

#4 0x00007£9575758466 in ruby_cleanup (ex=6) at eval.c:186

#5 0x00007£9575758725 in ruby_run_node (n=0x7f956c54c6b8) at eval.c:300

#6 0x00000000004008eb in main (argc=2, argv=0x7fffccd8e7c8) at main.c:36

(gdb)

Looking at the thread state shows that the rb_threadptr_to_kill executed properly, because to_kill is properly set, but the errinfo was
nilled out:

(gdb) p ruby_current_thread

S1 = (rb_thread_t *) 0x7£8cd06eb800
(gdb) p ruby_current_thread->to_kill
$2 =1

(gdb) p ruby_current_thread->status
$3 = THREAD_STOPPED

(gdb) p ruby_current_thread->errinfo
$4 = 8

05/26/2025 2/4

I'm happy to contribute a patch, but not quite sure what the appropriate fix for this would be. It looks like the issue is an exception in
ensure is causing the TAG_FATAL on errinfo to be overwritten so the thread doesn't think it should exit, and the right fix is to also
check if to_Kill is set.

Related issues:
Has duplicate Ruby - Bug #17164: Threads can ignore kill/interrupt/abort Closed

History

#1 - 09/15/2017 02:45 AM - ko1 (Koichi Sasada)
- Status changed from Open to Assigned

- Assignee set to ko1 (Koichi Sasada)

#2 - 02/21/2018 06:35 AM - ko1 (Koichi Sasada)

Sorry for long absent.

The point is "when should we check to_kill flag"?
It is not clear.

This is a issue that Ctrl-C doesn't work on it (and we need to use kill -9).
| think modify Ctrl-C issue is enough on this ticket.

Thoughts?
#3 - 02/26/2018 06:26 PM - zanker (Zachary Anker)
ko1 (Koichi Sasada) wrote:

Sorry for long absent.

The point is "when should we check to_kill flag"?
It is not clear.

This is a issue that Ctrl-C doesn't work on it (and we need to use kill -9).
| think modify Ctrl-C issue is enough on this ticket.

Thoughts?

No problem! The problem with Ctrl-C is that will fix it for user facing scripts, but not background processes. The example we ran into with this, was
using Puma with forked child processes. The Puma master process was sent a kill -int, which then sent it to the child processes, but not all of them
exited properly due to this bug.

To clarify the to_kill part, what is happening internally is:

1. Ruby VM receives a signal telling it to exit

2.terminate_all is called which enqueues the eTerminateSignal signal

3. Eventually hits rb_threadptr_execute_interrupts which calls rb_threadptr_to_kill
4.rb_threadptr_to_kill sets errinfo = INT2FIX(TAG_FATAL) and to_kill = 1 on the thread struct
5. Exception is caught (see example in the initial report), which causes errinfo to be nilled out
6. Ruby VM doesn't try and finish exiting the thread since the errinfo flag is now nilled out

It seems like the Ruby VM shouldn't allow you to rescue exceptions in such a way that it can block a thread from exiting.

#4 - 05/29/2020 11:42 PM - wjordan (Will Jordan)

- File http_gzip_hang.rb added

This bug still seems to be affecting all more recent versions of Ruby up to and including 2.7.1.

| encountered this in the newrelic_rpm gem which was intermittently hanging on shutdown in a short-lived script. It turns out that if Ruby exits while a

thread is in the middle of receiving a gzip-encoded request via Net::HTTP, this call to #finish in an ensure block raises a Zlib::BufError exception,
triggering this bug.

I've attached a minimal repro of this issue being triggered by gzip decoding in Net::HTTP, hope this is helpful.

#5 - 05/30/2020 07:10 AM - Eregon (Benoit Daloze)

In the original example, it gets stuck on the second call to sleep.

Basically the "kill Thread" exception (which cannot be rescue-d directly) was thrown after Ctrl+C to the Thread.
However, that ensure raises another (RuntimeError) exception, and that replaces the "kill Thread" exception.
I'm not sure what we could do in the VM to fix that.

05/26/2025 3/4

https://github.com/ruby/ruby/blob/9b8825b6f94696c9659f93f5da9bf02644625f67/lib/net/http/response.rb#L274

Maybe raise during shutdown should always raise a "kill Thread" exception and ignore the actual exception passed?

Or the "kill Thread" exception could be set as an internal cause, and when rescue-ing the RuntimeError, that "kill Thread" exception would be
re-raised at the end of the rescue block? (sounds fragile)

Retrying from the main thread to kill other threads is not great, because how to know how long we should wait until the retry?

| would argue it's at least partly the program's bug, because it swallows an exception and keeps going ignoring it.
For instance, if some other error (e.g. a SyntaxError, an OutOfMemoryError, a NoMethodError if sleep was misspelled, etc) happened in such a
program, it would not terminate the program and probably go unnoticed.

#6 - 05/30/2020 07:36 AM - Eregon (Benoit Daloze)

Regarding the http/gzip example, it seems unfortunate but it's probably the same for any exception raised in ensure: that exception might replace a
more "critical" exception such as "kill Thread" exception/NoMemoryError/SignalException/etc.
And that in itself can be useful, i.e., it allows to find what failed in that ensure.

In the example, the thread goes to infinite sleep after rescue, so it seems somewhat expected that program can hang though.

Related commits:

https://github.com/ruby/ruby/commit/6811973d1355ba40ee4b3fc5a43ed65b67aac9b7 by @naruse (Yui NARUSE), which attemps to re-raise the
original exception, but that doesn't work for "kill Thread" exceptions.
https://github.com/ruby/ruby/commit/d7bb66df2667040518186eb72928dedb4b7de6b9 which has to workaround because "kill Thread" exceptions set
$! to nil

| think the only good fix for this case is to make inflate_body_io.finish not raise or have an alternative method doing similar cleanup but not raise.
Raising in ensure is problematic as seen in this issue.

One thought is we could always re-raised the exception entering the ensure block when leaving it.
But that would then completely ignore exceptions raised inside ensure, which might or not be wanted.

For this specific case, | think this is a simple fix, assuming we don't care (i.e., won't be shown anywhere, needs --debug) about the exception of finish
if there is another exception:

begin
yield inflate_body_io
success = true

ensure
begin

inflate_body_io.finish
rescue => err
Ignore #finish's error if there is an exception from yield
raise err if success
end
end

Then the script terminates as expected.

#7 - 05/30/2020 08:35 AM - Eregon (Benoit Daloze)
PR to fix the Net::HTTP/gzip case with specs to verify the fix: https:/github.com/ruby/ruby/pull/3164

#8 - 05/31/2020 10:52 AM - Eregon (Benoit Daloze)
| merged that PR and requested a backport in #16925.

#9 - 09/10/2020 10:43 PM - jeremyevans0 (Jeremy Evans)
- Has duplicate Bug #17164: Threads can ignore Kill/interrupt/abort added

#10 - 03/17/2021 02:59 PM - jeremyevans0 (Jeremy Evans)

- Status changed from Assigned to Closed

Files

http_gzip_hang.rb 832 Bytes 05/29/2020 wjordan (Will Jordan)

05/26/2025 4/4

https://github.com/ruby/ruby/commit/6811973d1355ba40ee4b3fc5a43ed65b67aac9b7
https://redmine.ruby-lang.org/users/5
https://github.com/ruby/ruby/commit/d7bb66df2667040518186eb72928dedb4b7de6b9
https://github.com/ruby/ruby/pull/3164
https://redmine.ruby-lang.org/issues/16925
http://www.tcpdf.org

