
Ruby - Bug #14196

Signal.trap overrides pre-existing "SIG_IGN" handler on a process

12/18/2017 05:26 AM - shayonj (Shayon Mukherjee)

Status: Third Party's Issue

Priority: Normal

Assignee:

Target version:

ruby -v: ruby 2.3.3p222 (2016-11-21 revision

56859) [x86_64-darwin16]

Backport: 2.3: UNKNOWN, 2.4: UNKNOWN

Description

Came across while debugging an issue with bundler https://github.com/bundler/bundler/issues/6150

The issue is, if a process already has a SIG_IGN / IGNORE present on it, then doing a Signal.trap overrides the handler on the same

process. I believe, if a process already has a SIG_IGN then the same should be respected/restore.

This is how I am able to replicate the issue (from a linux machine where /proc is mounted).

Sample ruby file for testing (test.rb)

p Signal.trap("SIGHUP", "IGNORE")

p Signal.trap("SIGHUP", "SYSTEM_DEFAULT")

This returns the correct string, `IGNORE`, but does not update the signal handler.

sleep 100

 Here we are replicating a scenario where a process first gets a trap from SIG_IGN and then a SYSTEM_DEFAULT / DEFAULT.

Next, run it

ruby test.rb 2>&2 &

[1] 23156

 Now, lets see what signals are reserved on this status:

cat /proc/23156/status

Name: ruby

Umask: 0022

State: S (sleeping)

Tgid: 23156

Ngid: 0

Pid: 23156

PPid: 52

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 256

Groups:

NStgid: 23156

NSpid: 23156

NSpgid: 23156

NSsid: 52

VmPeak: 40508 kB

VmSize: 40508 kB

VmLck: 0 kB

VmPin: 0 kB

VmHWM: 8036 kB

VmRSS: 8036 kB

RssAnon: 3596 kB

RssFile: 4440 kB

RssShmem: 0 kB

VmData: 5192 kB

06/07/2025 1/3

https://github.com/bundler/bundler/issues/6150

VmStk: 8188 kB

VmExe: 4 kB

VmLib: 6624 kB

VmPTE: 88 kB

VmPMD: 12 kB

VmSwap: 0 kB

HugetlbPages: 0 kB

Threads: 2

SigQ: 0/7753

SigPnd: 0000000000000000

ShdPnd: 0000000000000000

SigBlk: 0000000000000000

SigIgn: 0000000000000000

SigCgt: 00000001c2007e4e

CapInh: 00000000a80425fb

CapPrm: 00000000a80425fb

CapEff: 00000000a80425fb

CapBnd: 00000000a80425fb

CapAmb: 0000000000000000

Seccomp: 2

Cpus_allowed: f

Cpus_allowed_list: 0-3

Mems_allowed: 1

Mems_allowed_list: 0

voluntary_ctxt_switches: 1

nonvoluntary_ctxt_switches: 8

 You'll notice that SigIgn is 0000000000000000 which a bitmask and is indicating no IGNORE handlers on the process is reserved.

I have a fix/patch with specs, which I will share soon on Github for further insight. I would love to learn thoughts on this :).

History

#1 - 12/18/2017 05:28 AM - shayonj (Shayon Mukherjee)

- Description updated

#2 - 12/18/2017 05:53 AM - shyouhei (Shyouhei Urabe)

shayonj (Shayon Mukherjee) wrote:

I believe, if a process already has a SIG_IGN then the same should be respected/restore.

 I don't think so. Signal handlers are per-prorcess global resources. If a program decides to set one, that should be honored, not ignored only

because its previous state is SIG_IGN. This is how a signal handler works, AFAIK as in other languages like C.

PS. The return value of Signal.trap is what was previously set, not the current handler. So when it returns "IGNORE", that means the previous

handler was it, not now.

#3 - 12/18/2017 06:08 AM - shayonj (Shayon Mukherjee)

shyouhei (Shyouhei Urabe) wrote:

shayonj (Shayon Mukherjee) wrote:

I believe, if a process already has a SIG_IGN then the same should be respected/restore.

 I don't think so. Signal handlers are per-prorcess global resources. If a program decides to set one, that should be honored, not ignored only

because its previous state is SIG_IGN. This is how a signal handler works, AFAIK as in other languages like C.

PS. The return value of Signal.trap is what was previously set, not the current handler. So when it returns "IGNORE", that means the previous

handler was it, not now.

 Thanks! I realize that Signal.trap returns the previously set handler, though I didn't realize, we don't wish to preserve the previously set handler. I

guess it makes sense for a program to handle this case-by-case basis.

Feel free to close it out, if you think this is not actionable :).

06/07/2025 2/3

#4 - 12/18/2017 06:15 AM - shyouhei (Shyouhei Urabe)

- Status changed from Open to Third Party's Issue

Closing. Thanks anyway!

Powered by TCPDF (www.tcpdf.org)

06/07/2025 3/3

http://www.tcpdf.org

