
Ruby - Bug #16242

Refinements method call to failed

10/06/2019 07:33 AM - osyo (manga osyo)

Status: Closed

Priority: Normal

Assignee:

Target version:

ruby -v: 2.7.0 Backport: 2.5: UNKNOWN, 2.6: UNKNOWN

Description

Refinements method call to failed with prepend.

No problem

module M

 # Methods that you want to call only within this context

 refine M do

 def refine_method

 "refine_method"

 end

 end

 using M

 def hoge

 # OK: `refine_method` calls the method

 refine_method

 end

end

class X

 include M

end

pp X.new.hoge

=> "refine_method"

Problem

If prepend another module, the search for refine_method fails

module OtherM

end

module M

 # Added prepend

 prepend OtherM

 refine M do

 def refine_method

 "refine_method"

 end

 end

 using M

 def hoge

Error: `hoge': undefined local variable or method `refine_method' for #<X:0x00007fa05a024390> (N

ameError)

 refine_method

 end

end

06/08/2025 1/4

class X

 include M

end

Error

pp X.new.hoge

Environment

Reproduced in the following environment.

RUBY_VERSION # => "2.7.0"

RUBY_REVISION # => "02dfa0f16361c498e0f529054b00e3e09730892b"

RUBY_PLATFORM # => "x86_64-darwin17"

 You can also confirm that it is reproduced here.

https://wandbox.org/permlink/I6tQesDRntT7JZqB

Related issues:

Related to Ruby - Bug #13446: refinements with prepend for module has strange... Closed

Associated revisions

Revision 5069c5f5214ce68df8b3954321ad9114c5368dc3 - 11/28/2019 10:57 AM - jeremyevans (Jeremy Evans)

Honor refinements for modules that prepend other modules

This previously did not work, and the reason it did not work is

that:

1. Refining a module or class that prepends other modules places

the refinements in the class itself and not the origin iclass.

2. Inclusion of a module that prepends other modules skips the

module itself, including only iclasses for the prepended modules

and the origin iclass.

Those two behaviors combined meant that the method table for the

refined methods for the included module never ends up in the

method lookup chain for the class including the module.

Fix this by not skipping the module itself when the module is

included. This requires some code rearranging in

rb_include_class_new to make sure the correct method tables and

origin settings are used for the created iclass.

As origin iclasses shouldn't be exposed to Ruby, this also

requires skipping modules that have origin iclasses in

Module#ancestors (classes that have origin iclasses were already

skipped).

Fixes [Bug #16242]

Revision 5069c5f5214ce68df8b3954321ad9114c5368dc3 - 11/28/2019 10:57 AM - jeremyevans (Jeremy Evans)

Honor refinements for modules that prepend other modules

This previously did not work, and the reason it did not work is

that:

1. Refining a module or class that prepends other modules places

the refinements in the class itself and not the origin iclass.

2. Inclusion of a module that prepends other modules skips the

module itself, including only iclasses for the prepended modules

and the origin iclass.

Those two behaviors combined meant that the method table for the

refined methods for the included module never ends up in the

method lookup chain for the class including the module.

06/08/2025 2/4

https://wandbox.org/permlink/I6tQesDRntT7JZqB

Fix this by not skipping the module itself when the module is

included. This requires some code rearranging in

rb_include_class_new to make sure the correct method tables and

origin settings are used for the created iclass.

As origin iclasses shouldn't be exposed to Ruby, this also

requires skipping modules that have origin iclasses in

Module#ancestors (classes that have origin iclasses were already

skipped).

Fixes [Bug #16242]

Revision 5069c5f5 - 11/28/2019 10:57 AM - jeremyevans (Jeremy Evans)

Honor refinements for modules that prepend other modules

This previously did not work, and the reason it did not work is

that:

1. Refining a module or class that prepends other modules places

the refinements in the class itself and not the origin iclass.

2. Inclusion of a module that prepends other modules skips the

module itself, including only iclasses for the prepended modules

and the origin iclass.

Those two behaviors combined meant that the method table for the

refined methods for the included module never ends up in the

method lookup chain for the class including the module.

Fix this by not skipping the module itself when the module is

included. This requires some code rearranging in

rb_include_class_new to make sure the correct method tables and

origin settings are used for the created iclass.

As origin iclasses shouldn't be exposed to Ruby, this also

requires skipping modules that have origin iclasses in

Module#ancestors (classes that have origin iclasses were already

skipped).

Fixes [Bug #16242]

Revision f0a5a07fa5b98a2e7fcd028cebd7770c6d8916a7 - 11/28/2019 10:57 AM - nobu (Nobuyoshi Nakada)

Removed unused variable [Bug #16242]

Revision f0a5a07fa5b98a2e7fcd028cebd7770c6d8916a7 - 11/28/2019 10:57 AM - nobu (Nobuyoshi Nakada)

Removed unused variable [Bug #16242]

Revision f0a5a07f - 11/28/2019 10:57 AM - nobu (Nobuyoshi Nakada)

Removed unused variable [Bug #16242]

Revision 2fa3b4565ad904b09419dc77f4fff03aee1a8358 - 11/28/2019 12:31 PM - nobu (Nobuyoshi Nakada)

Merged common statements [Bug #16242]

Revision 2fa3b4565ad904b09419dc77f4fff03aee1a8358 - 11/28/2019 12:31 PM - nobu (Nobuyoshi Nakada)

Merged common statements [Bug #16242]

Revision 2fa3b456 - 11/28/2019 12:31 PM - nobu (Nobuyoshi Nakada)

Merged common statements [Bug #16242]

History

#1 - 10/06/2019 01:47 PM - osyo (manga osyo)

- Description updated

#2 - 10/08/2019 11:20 PM - wanabe (_ wanabe)

- Related to Bug #13446: refinements with prepend for module has strange behavior added

06/08/2025 3/4

#3 - 10/12/2019 11:47 PM - jeremyevans0 (Jeremy Evans)

This issue is specific to modules that are refined and use prepend. The reason it does not work:

1. Refining a module or class that prepends other modules places the refinements in the class itself and not the origin iclass.

2. Inclusion of a module that prepends other modules skips the module itself, including only iclasses for the prepended modules and the origin

iclass.

Those two behaviors combined meant that the method table for the refined methods for the included module never ends up in the method lookup

chain for the class including the module.

Fix this by not skipping the module itself when the module is included (see https://github.com/ruby/ruby/pull/2550). This requires some code

rearranging in rb_include_class_new to make sure the correct method tables and origin settings are used for the created iclass.

As origin iclasses shouldn't be exposed to Ruby, this also requires skipping modules that have origin iclasses in Module#ancestors (classes that have

origin iclasses were already skipped).

#4 - 10/12/2019 11:57 PM - osyo (manga osyo)

- Description updated

#5 - 10/13/2019 12:00 AM - osyo (manga osyo)

Its greated!!

Thanks jeremy :)

I will read pull request.

#6 - 11/28/2019 10:57 AM - jeremyevans (Jeremy Evans)

- Status changed from Open to Closed

Applied in changeset git|5069c5f5214ce68df8b3954321ad9114c5368dc3.

Honor refinements for modules that prepend other modules

This previously did not work, and the reason it did not work is

that:

1. Refining a module or class that prepends other modules places

the refinements in the class itself and not the origin iclass.

2. Inclusion of a module that prepends other modules skips the

module itself, including only iclasses for the prepended modules

and the origin iclass.

Those two behaviors combined meant that the method table for the

refined methods for the included module never ends up in the

method lookup chain for the class including the module.

Fix this by not skipping the module itself when the module is

included. This requires some code rearranging in

rb_include_class_new to make sure the correct method tables and

origin settings are used for the created iclass.

As origin iclasses shouldn't be exposed to Ruby, this also

requires skipping modules that have origin iclasses in

Module#ancestors (classes that have origin iclasses were already

skipped).

Fixes [Bug #16242]

Powered by TCPDF (www.tcpdf.org)

06/08/2025 4/4

https://github.com/ruby/ruby/pull/2550
https://redmine.ruby-lang.org/projects/ruby-master/repository/git/revisions/5069c5f5214ce68df8b3954321ad9114c5368dc3
https://redmine.ruby-lang.org/issues/16242
http://www.tcpdf.org

